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Abstract 

 The importance of soil-structure interaction (SSI) effects on the seismic response of 

buildings has been long recognized and has been researched for over 40 years. However, SSI 

analysis has only been applied in a few building projects because the fixed base condition is 

considered to provide a conservative estimation for the response of buildings under seismic loads. 

This assumption of a fixed base condition adopted by practitioners is not always conservative or 

cost-effective, especially for rigid buildings over soft soils.  Additionally, for the case of ductile 

steel frames with eccentric configurations, the influence of SSI on their seismic performance has 

not been investigated.  

In this study, the seismic performance of eccentrically braced frames (EBFs) considering 

SSI effects is investigated using analytical models. Background information and modern 

guidelines available to consider SSI in the seismic analysis of buildings are presented and 

discussed.  Following, a 3-story building with EBFs on shallow foundations is analyzed with and 

without SSI. The beam on Winkler foundation approach is used to model the linear and nonlinear 

soil-foundation interface behavior, considering linear-elastic, elastic-perfectly plastic, and 

nonlinear springs. Inter-story drifts, residual drifts, link rotations, and axial load column demands 

were similar for frames with flexible base and fixed base conditions when elastic and elastic-

perfectly plastic springs were used. However, when nonlinear springs were used, frames with a 

flexible base showed a significant reduction in their responses in comparison to those observed for 

the fixed base condition. As a result, a reduction in frame member sizes was possible and justified 

through SSI analyses.  
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I. Introduction 

 

Soil-structure interaction (SSI) analysis of buildings assesses the combined response of the 

superstructure, its foundation system, and the soil beneath under seismic excitation. This 

interaction between a structure and the underlying soil have been a matter of interest and research 

for many years. This phenomenon is particularly important for massive and stiff structures, such 

as nuclear power plants, supported on soft soils (Roësset, 1996).  Therefore, most of the research 

conducted in the past on this topic was related to the seismic design of these types of structures. 

As a result of these research efforts, modern codes related to the design of nuclear facilities require 

linear time-history analyses considering SSI. 

For the case of buildings, SSI has been traditionally thought to be of little benefit for typical 

seismic analyses. Indeed, for flexible buildings constructed over stiff soils, there is usually no 

change in their seismic response by including SSI effects in comparison with fixed base conditions. 

For intermediate and long period buildings; however, period elongation due to the soil flexibility 

can cause a reduction in the spectral acceleration (i.e., seismic demand) using the response 

spectrum shape adopted by design codes in the United States. An additional uniform reduction on 

the response spectrum can also be taken due to the increment of damping in the structure. These 

reductions in the response spectra, as illustrated in Figure 1, support the conservationism for using 

a fixed base. 

 There are also some situations where the seismic demand can increase with the increment 

of the building period for a specific response spectrum. For instance, ground motions in deep soft 

soil deposits can be deviated from the motion in the bedrock because the soil column and soil-

foundation system act as filters for ground motions. In fact, seismic waves can be amplified at 
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some frequencies or attenuated at others. Amplification of ground motions in deep soil deposits 

and the forward fault-rupture directivity can cause an increment in spectral acceleration with 

building period, as presented in Figure 2. Additionally, elongation of the building period can cause 

an increase in the ductility demand on buildings constructed over soft soil (Mylonakis and Gazetas, 

2000).  

 

Figure 1. Decrease in spectral acceleration due to SSI effects in a design response spectrum 

(Bolisetti and Whittaker, 2015) 

 

Despite the limited application of SSI in the seismic design of buildings, reductions in 

structural member sizes and/or foundation elements has been reported for some buildings projects 

due to the implementation of this approach (Wilcock et al., 2015). By including SSI effects in the 

seismic analysis of buildings, a more “realistic” distribution of the strength demands and 

deformations can be achieved. In addition, base-slab averaging and embedded effects due to the 

presence of the foundation system and basement levels, respectively, can be taken into account to 
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modify the input ground motion. This motion at the foundation level, or foundation input motion 

(FIM), can be applied to the building model as a uniform base excitation instead of using a free-

field motion. There are some analytical equations available to evaluate the deviation of the free-

field motion due to the presence of shallow foundations (Veletsos and Prasad, 1989; Mylonakys 

et al., 2006) and basement levels (Elsabee and Morray, 1975; Kausel et al., 1978; Day, 1978). 

 

Figure 2. Comparison between a typical design code spectrum and response spectra from 

recorded earthquakes with strong long-period components (Mylonakis and Gazetas, 2000) 

 

The lack of implementation of SSI analysis can be mainly attributed to the misconception 

of the conservative approach of using fixed base supports for all types of soil conditions. In 

addition, the poor understanding of this phenomenon, time-consuming application, and the lack of 

available technical information support the limited implementation of SSI analysis for building 

structures. As a consequence, the common support assumption used by structural engineers is the 

fixed base condition. That is the case of modern design codes such as ASCE/SEI 7-10, Minimum 

Design Loads for Buildings and Other Structures (ASCE, 2010), which contains guidelines to 

consider SSI for the seismic analysis of buildings using the equivalent lateral force (ELF) 
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procedure and modal analysis.  These guidelines have a bias to always reduce the seismic demand, 

so neglecting SSI is conservative for structural design. Even the available procedure to account for 

SSI in ASCE/SEI 7-10 could have a shortcoming because there is no link between the response 

modification factors, R, for considering ductility in linear analysis and SSI (Crouse, 2001).  For 

the case of nonlinear procedures, modern codes remain silent about how to consider SSI effects in 

nonlinear static analysis (NSA) and nonlinear response history analysis (NRHA) even though there 

is evidence that these types of analyses are sometimes used in practice for the seismic evaluation 

of existing buildings and performance-based seismic design of new buildings. Performance-based 

seismic design is becoming more and more common in practice to evaluate existing or new 

buildings and its implementation along with SSI effects could be needed, especially, for buildings 

over soft soils. 

In the past five years, there has been an increase in research and the availability of 

technical information regarding the consideration of SSI in the structural analysis of buildings. 

ASCE/SEI 41-13, Seismic Evaluation and Retrofit of Buildings (ASCE, 2013), adopted the 

guidelines included in FEMA 440, Improvement of Nonlinear Static Seismic Analysis 

Procedures (FEMA, 2005), for including SSI in the seismic analysis of buildings. These 

provisions and updated research related to SSI were later included in NIST GCR 12-917-21, 

Soil-Structure Interaction for Building Structures (NIST, 2012). NIST (2012) includes guidelines 

to incorporate SSI effects in both linear and nonlinear procedures for the seismic analysis of 

buildings structures. All the information included in the aforementioned documents were used to 

develop an updated chapter of SSI for buildings in FEMA P-1050, NEHRP Recommended 

Seismic Provisions for New Buildings and Other Structures (FEMA, 2015), and eventually these 

provisions will be included in the new ASCE/SEI 7-16, Minimum Design Loads and Associated 
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Criteria for Buildings and Other Structures. Although these new provisions state that the 

implementation of SSI analysis is optional, it is expected that the application of SSI on the 

seismic analysis of buildings will increase in engineering practice.  

With the increased availability of this new technical information and research related to 

SSI for building structures, linear and nonlinear analysis of new and existing structures can be 

performed more often. In this context, lateral seismic resisting systems such as ductile braced 

frames with eccentric configurations can be evaluated considering SSI effects. These types of 

frames have an advantage over the commonly used concentrically braced frames (CBF) in their 

ability to accommodate architectural features (e.g., doors, windows, and hallways). Additionally, 

these frames with eccentric configurations, such as eccentrically brace frames (EBFs), can 

dissipate energy during severe earthquakes and act as structural fuses to protect the rest of the 

structure. However, modern design codes (e.g., ANSI/AISC, 2010) suggest that connection 

testing or prequalified connections are needed for EBFs with link-to-column connections, 

affecting their economy. The energy dissipation capacity of these types of frames along with SSI 

have not been the object of previous documented research. 

The objectives of this study are summarized as follows: 

 Present and discuss approaches to include SSI effects on the seismic analysis of buildings  

 Analyze and discuss guidelines included in NIST (2012) and FEMA P-1050/2015 for 

considering SSI in the seismic analysis of buildings 

 Investigate the effects of including SSI on the seismic analysis of low-rise EBFs with 

link-to-column connections over shallow foundations using numerical modeling 

 Compare structural responses of EBFs obtained with fixed base supports and those 

including SSI effects 
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II. Background 

 

The seismic design of building structures is typically conducted to satisfy the life safety 

performance objective implicit in modern design codes. In order to satisfy this objective, 

deformations need to be limited and enough strength must be assigned to structural elements at 

certain locations to ensure ductile behavior and sufficient structural capacity under the Design 

Basis Earthquake (DBE). Additionally, a low probability of collapse must be ensured under the 

Maximum Considered Earthquake (MCE). For the case of performance-based seismic design, 

buildings need to behave elastically under an additional hazard level called the Service Level 

Earthquake (SLE). These types of analyses are usually conducted in practice disregarding the 

flexibility of the soil beneath the structure (i.e., the fixed base condition).  

The assumption of ignoring the flexibility of the soil for the seismic analysis of buildings 

has been conservative for projects constructed over stiff soils. However, there is evidence of 

serious damages to buildings and other structures during earthquakes due to the interaction 

between the soil and the structure or SSI effects at sites with soft soils. For instance, the 1985 

Mexico City earthquake caused a lot of damage to many buildings in this area. The deep soft soil 

deposit at this site and the presence structure-foundation system amplified the ground motions, 

resulting in a “double-resonance” condition for some buildings (Kramer, 1996). In addition, 

some studies (Romero and Rix, 2005; Mwafy et al., 2011) have suggested that structures 

constructed along the Mississippi Embayment in the U.S., close to the New Madrid seismic zone, 

can experience significant amplification of the ground motions. Based on this evidence, there are 

some situations when SSI should be taken into account for the seismic analysis of buildings. 

Low-rise buildings over soft soils are commonly stiff and supported by shallow 

foundations; therefore, they are potentially susceptible to SSI effects (Roësset, 1996; Stewart et 
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al. 1999b; Mylonakis and Gazetas, 2000). Buildings supported by shallow foundations can 

dissipate energy due to inelastic sliding, settling, and rocking movements under seismic 

excitation (see Figure 3), so reduction in the seismic demand can be achieved. The rocking mode 

is of particular interest due to its re-centering mechanism. Therefore, the overall response of 

buildings can be enhanced by allowing a certain amount of foundation rocking. This energy 

dissipation capacity of the soil-foundation interface has been studied by many researchers using 

experimental tests (Rosebrook and Kutter, 2001a, b, c; Gajan et al., 2003a, b; Thomas et al., 

2004; Chang et al., 2007; and Ugalde et al., 2007) ) and numerical analyses (Cremer et al., 2001; 

Gajan, 2006; Paolucci et al., 2008).  

 

Figure 3. Vibration modes of shallow foundations (Raychowdhury, 2008) 

 

 A series of physical tests have been conducted in the past 20 years to evaluate the 

nonlinear response of shallow foundations under seismic excitation. In this context, centrifuge 

tests have become very popular for evaluating the performance of soil-foundation systems.  For 

instance, cyclic tests were conducted by Gadre and Dobry (1998) on an embedded square footing 
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for studying its lateral response under different displacements. Passive and active pressures at the 

sides of the footing were considered and results showed that the passive pressure provides more 

than 50% of the lateral resistance of the soil-footing system. Rosebrook and Kutter (2001a,b,c); 

Gajan et al. (2003a, b); Thomas et al. (2004); Chang et al. (2007), and Ugalde et al. (2007) have 

also reported a series of tests conducted at the University of California, Davis (UCD) using a 9 m 

radius centrifuge and a scale factor, N, of 20. These tests were conducted on shallow strip and 

square footings using a range of vertical factors of safety and different types of loading such as 

monotonic, vertical and lateral slow cyclic, and dynamic. As result of these tests, the combined 

effect of structural and soil nonlinearity was observed and the main observations obtained are 

summarized as follows: 

 degradation of rotational stiffness due to the foundation yielding 

 the moment-rotation and shear-sliding response showed a significant amount of energy 

dissipation 

 permanent deformations were observed as a result of the soil yielding 

 the embedment depth increased both the moment and shear capacity 

 soil density, soil type, footing size, aspect ratio, embedment, static vertical factor of 

safety, and amplitude of cycling loading affected the foundation stiffness degradation and 

its permanent displacement 

Additionally, one-g experiments, using either base input, such as shake table, or inertial 

load, such as structure-mounted hydraulic jacks, have been used to investigate the seismic 

performance of the soil-foundation interface using shallow foundations. The first foundation 

rocking experiments on shallow footings over sand and clay soils for observing their moment-

rotation behavior were conducted in New Zealand by Professor Taylor and his students (Barlett, 
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1976; Wiessing, 1979; Taylor et al., 1981). Results from these studies showed that designing a 

spread footing capable of yielding the soil beneath at a moment less than the moment capacity of 

the column can avoid the formation of plastic hinges at the base of the column. One-g 

experiments were also reported by Negro et al. (1998), Maugeri et al. (2000), and Knapeet et al 

(2004) on shallow foundations over sand and their main findings were: 

 the vertical factor of safety showed a significant effect on the damping and level of 

distortion   

 eccentricity on tests caused a reduction in the seismic bearing capacity and large 

residual rotations (24°) 

  moments effects were significant resulting in a large reduction in bearing capacity 

due to uplift for structures with a center of mass well above the foundation level  

For the case of numerical analysis, there are three common approaches for modeling SSI 

effects on shallow foundations: continuum finite element and boundary element approaches, 

macro-element formulations, and Winkler-based approaches. The continuum approach uses a 

semi-infinite and isotropic or anisotropic soil domain. Macro-element methods evaluate the 

response of shallow foundations under seismic loading using a single element and a plasticity-

based formulation (Cremer et al., 2001; Gajan, 2006; Paolucci et al., 2008). The most utilized 

approach in practice is Winkler’s method (1867). Winkler-based approaches can be used with 1D 

spring elements or 1D spring elements in combination with 2D or 3D soil elements to model the 

soil-foundation response.  Several publications describe various Winkler-based models used for 

modeling the seismic response of shallow foundations resting on either an elastic o inelastic soil 

medium, and these models consider the inelastic behavior of the soil-foundation interface 

through the effect of foundation uplift due to rocking. The Winkler’s approach is further 
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discussed in detail because it is used in this study to model the soil-foundation interface behavior 

for shallow foundations. 

The first efforts for using Winkler models to assess the rocking response of shallow 

foundations took place in New Zealand. An analytical model using elastic-perfectly-plastic 

springs along with Coulomb slider elements to evaluate moment-rotation behavior of rigid 

footings were developed by Taylor et al. (1981) and Barlett (1976). Psycharis (1981) suggested a 

model using two different approaches: the two-spring model and the distributed Winkler spring 

model. Viscous dampers, elastic-perfectly plastic springs, and an impact mechanism allowing 

dissipation of energy at impact were used as elements to consider nonlinear behavior in the soil-

foundation interface. Simplified equations to quantify base shear resistance of flexible structures 

allowing uplift for single and multi-degree-of-freedom systems were reported by Chopra and 

Yim (1985) and Yim and Chopra (1985), respectively, using linear springs. Results obtained 

from analyses suggested that foundation flexibility and uplift have a significant effect on the 

fundamental period of vibration of multi-story structures, but they have a little effect on higher 

modes. 

 

Figure 4. Idealized foundation system by Chopra and Yim (1985): (a) rigid foundation, (b) 

two-element (spring-dashpot) system, and (c) distributed Winkler (spring-dashpot) system 

(Harden et al., 2005) 
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Figure 5. Moment-rotation envelope assuming different idealized foundations after Chopra 

and Yim (1985) 

 

A shear wall structure was analyzed by Nakaki and Hart (1987) using discretely spaced 

vertical springs with viscous dampers. This shear wall structure was represented using a 

nonlinear stiffness degrading hysteretic model while Winkler springs with zero tension capacity 

and elastic compressive capacity were used. Due to the uplift of the foundation, a considerable 

reduction in the ductility demands was obtained in comparison with the fixed base condition. A 

Winkler type finite element model was developed by Harden et al. (2005) to evaluate the 

nonlinear behavior of shallow strip footings under lateral cyclic loads. Results from this study 

had good agreement with centrifuge and one-g model tests on shallow foundations subjected to 

both slow cyclic and dynamic base excitation. In addition, it was shown that the experimental 

unloading stiffness offered better results than the elastic stiffness computed using equations 

developed by Gazetas (1991b). Allotey and Naggar (2007) used the Winkler approach and 

backbone curves previously developed by them for modeling the cyclic response of shallow 
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foundations. The numerical model developed was able to predict the moment-rotation and 

settlement response reasonably well, but the sliding response was not well captured. 

 

Figure 6. Backbone curves after Allotey and Naggar (2007) 

 

Ductile braced frame systems such as EBFs have been traditionally used to accommodate 

features in braced spans, offering an advantage over the typically used CBF (Figure 7). However, 

there are a limited number of EBF configurations due to the poor performance of the link-to-

column connections. EBFs dissipate energy during earthquakes through inelastic deformation of 

beam elements called “links” while the rest of the structural elements remain essentially elastic. 

Damage to EBF links requires the replacement of entire beams and can be an expensive and 

time-consuming repair (Prinz, 2010). Consequently, more robust and accurate analyses are 

needed to better evaluate the performance of EBFs and quantify damage to the EBF links.  

One approach that has not been commonly used to assess the seismic performance of 

EBFs is SSI. The energy dissipation mechanism of EBFs is usually expected to be from specially 

designed segments of beam called links because these elements act as “structural fuses”; 
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however, the soil-foundation interface can add more energy dissipation capacity to the entire 

structure-foundation-soil system, thereby reducing the concentrated damage of these ductile 

elements. In this study, the seismic performance of EBFs with links with column connections 

considering SSI is investigated since those frames have less inelastic rotation capacity than mid-

span links due to the fracture in the flange at the connection (Okazaki et al., 2006). 

 

Figure 7. Comparison of EBF and CBF architectural flexibility (Prinz, 2010) 

 

A. Methods to Evaluate SSI 

 

There are two approaches to include SSI in the seismic analysis of structures: the direct 

approach and the substructure approach. The direct analysis evaluates SSI by modeling a limited 

soil domain along with the foundation system, superstructure, transmitting boundaries along the 

perimeter of the soil domain, and interface elements between the foundation system and soil. 

Therefore, the direct solution considers the complete soil-structure system and solves this problem 

in one step. For this method, it is necessary to evaluate the input ground motion at the base of the 

numerical model consistent with the desire seismic design hazard level. This input ground motion 

is typically obtained using deconvolution or using outcrop motions available. However, since the 

availability of outcrop motions is limited, site response analyses are usually performed to get this 
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input ground motion using deconvolution. Commercially available finite element programs such 

as ABAQUS (Dassault Systemes, 2005), ANSYS (ANSYS Inc., 2013), and LS-DYNA (LSTC, 

2013), or the open-source finite element program, OpenSees (Mazoni et al., 2007), can perform 

nonlinear analysis considering SSI and using the direct approach. Other programs such as 

SASSI2000 (Ostadan, 2006a) can execute multi-step linear analysis considering SSI with the direct 

approach. 

The substructure approach is a multi-step procedure for which it is necessary to: 

1. determine the seismic motion of the foundation or foundation input motion (FIM) without 

any structure 

2. evaluate the dynamic stiffnesses of the foundation as a function of frequency for a steady 

state harmonic excitation 

3. perform dynamic analysis of the structure using the dynamic stiffnesses and the seismic 

motion applied at the base of the structural model 

The first step mentioned above is often referred as kinematic interaction analysis, and it 

represents the modification of the ground motions due to the presence of the foundation system. 

The modification of the dynamic properties of the structure due to the flexibility of the soil-

foundation interface (second step) is known as inertial interaction. After the analysis of the 

combined structure-foundation-soil system is conducted, the resulting ground motion at the base 

will be different from the free-field motion. This modification from the free-field is due to the 

additional deformations of the soil caused by the base shears, axial forces, and overturning 

moments resulting from the inertia forces in the structure. It is important to mention that the FIM 

can vary with depth due to the presence of basement levels. Figure 8 shows the schematic 

illustration of the direct and the substructure approaches.  
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By using the direct approach, kinematic and inertial interaction effects are automatically 

included in the numerical model. Nevertheless, this approach is computationally demanding and 

time-consuming, so direct analyses for SSI are seldom used in practice. The substructure approach 

is more often implemented in design offices for the seismic design of buildings considering SSI. 

Consequently, the substructure approach is used for this study and its implementation is discussed 

in detail in the following sections. 

 

 

(a) Direct analysis                                              (b)  Substructure approach 

Figure 8. Schematic illustration of the direct and substructure approach (modified from 

NIST, 2010) 

B. Inertial Interaction 

 

Inertial interaction refers to the modification of the dynamic properties of a structure due 

to the flexibility of the soil-foundation system. As a result, displacements and rotations at the 

foundation level are caused by inertial forces such as base shears and moments. This effect can be 

a significant source of flexibility and energy dissipation for the structure-foundation-soil system.  
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Since the dynamic properties of a structure are affected by its support conditions, the period 

of vibration is expected to change with the degree of flexibility of its supports. As discussed, a 

rigid base or fixed base is the most common support assumption used in practice for modeling 

structures. This support condition assumes that the soil-foundation interface is infinitely rigid. On 

the other hand, a flexible base considers the deformability of the foundation system and the soil. 

A schematic illustration of the fixed and flexible base conditions for a single-degree-of-freedom 

structure with a force concentrated at the top can be seen in Figure 9. The lateral deflection, , of 

the structure with a fixed base presented in Figure 9a is caused by its translational displacement; 

however, the lateral deflection, 𝛥̃, of this structure with a flexible base (Figure 9b) is not just 

function of its translational displacement, but also the rotation of the foundation system. The 

undamped period of vibration, T, for the structure with a fixed base can be calculated as function 

of the circular frequency, mass, m, and stiffness, k, using the following commonly used equation 

(Clough and Penzien, 1993): 

𝑇 = 
2𝜋

𝜔
= 2𝜋√

𝑚

𝑘
                                                               (1) 

For the case of the flexible base, vertical (kz), horizontal (kx), and rotational springs (kyy) 

represent the flexibility of the soil-foundation system (see Figure 9b). The undamped period of 

vibration, 𝑇̃, for a structure with a flexible base can be estimated as a function of the structure 

height, h, spring constants at the foundation (kz, kx, and kyy), k, and T using the equation 

suggested by Veletsos and Meek (1974): 

𝑇̃

𝑇
= √1 +

𝑘

𝑘𝑥
+
𝑘ℎ2

𝑘𝑦𝑦
                                                            (2) 
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The ratio 𝑇̃/T is also known as the period lengthening ratio, and it is greater than unity 

based on the degree of flexibility of the soil-foundation system. Multi-degree-of-freedom 

structures can be analyzed using Equation 2 by taking the structure height, h, as the effective 

modal height, h*. This effective modal height applies just for the first-mode shape and is 

approximately 2/3 of the structure height. ASCE/SEI 7-10 uses Equation 2 to evaluate the period 

of vibration of buildings with flexible bases, 𝑇̃. 

 

Figure 9. Schematic illustration of deflections caused by a lateral force applied to: (a) 

structure with a fixed base; and (b) structure with a flexible base (NIST, 2012) 

 

 

 There are some parameters which affect inertial interaction effects for SSI. Veletsos and 

Nair (1975) and Bielak (1975) studied dimensionless parameters controlling period lengthening 

due to inertial effects.  These two studies found that two of the dimensionless parameters which 

control period lengthening is the structure-to-soil-stiffness ratio, h/(Vs.T), and the mass ratio, 

m/(s.4.B.L.h), which are function of the shear wave velocity, Vs, mass, m, soil mass density, s, 

foundation dimensions, B and L, h, and T. In a later study, Stewart et al. (1999b) concluded that 

the period lengthening increases significantly with the structure-to-soil-stiffness ratio, and it is 
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the most important parameter for inertial SSI effects. This study stated that h/(Vs.T) for buildings 

over soil and weathered rock is less than 0.10 for moment frame structures, and between 0.10 

and 0.50 for shear wall and braced frame structures. 

 Another effect of the inertial interaction on the seismic response of buildings is damping, 

referred to as foundation damping, f. There are two main sources of foundation damping: 

hysteretic and radiation damping. Hysteretic damping is caused by the hysteretic behavior of soil 

under seismic excitation while radiation damping is originated by the radiation of the reflected 

wave-field away from the foundation. Foundation damping is part of the flexible base system 

damping, 0: 

𝛽0 = 𝛽𝑓 + 
1

(𝑇̃ 𝑇⁄ )𝑛
𝛽𝑖                                                           (3) 

The inherent damping, i, is the structural damping assumed for the superstructure using 

a fixed base, and it is generally assumed to be 5% for typical structural systems. This inherent 

damping should be based on the material type, configuration, and behavior of the structural and 

nonstructural elements responding dynamically. PEER/ATC-72-1, Modelling and Acceptance 

Criteria for Seismic Design and Analysis of Tall Buildings (ATC, 2010), suggests more detailed 

values for i  based on the structural system type and configuration. The foundation damping can 

vary from 0 to 25% (Stewart, 1999b), and the exponent n in Equation 3 is taken as 3 for linearly 

viscous structural damping, and 2 for the other cases (Givens, 2013).  

Veletsos and Nair (1975), Bielak (1975 and 1976), Roësset (1980), Wolf (1985), Aviles 

and Perez-Rocha (1996), Maravas et al. (2007), Givens (2013), among others, developed 

analytical models for evaluating foundation damping. Most of these analytical models are 
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frequency-dependent. One exception is the expression suggested by Wolf (1985) using a circular 

foundation resting on a half-space, which ignores the frequency dependence of the foundation 

stiffness terms and assumes a linear foundation radiation damping. Similar to a previous study 

presented by Roësset (1980) considering frequency dependence, the expression initially 

suggested by Wolf’s can be expressed as: 

𝛽𝑓 = [
(𝑇̃ 𝑇⁄ )

𝑛𝑠
− 1

(𝑇̃ 𝑇⁄ )
𝑛𝑠

] 𝛽𝑠 + 
1

(𝑇̃ 𝑇𝑥⁄ )
𝑛𝑥
𝛽𝑥 + 

1

(𝑇̃ 𝑇𝑦𝑦⁄ )
𝑛𝑦𝑦

𝛽𝑦𝑦                      (4) 

where s is the hysteretic damping, x and yy are damping ratios corresponding to translational 

and rotational modes and the terms Tx and Tyy are fictitious vibration periods, calculated as if the 

only source of vibration is foundation translation and rotation. These periods can be calculated as 

follows: 

𝑇𝑥 = 2𝜋√
𝑚

𝑘𝑥
        𝑇𝑦𝑦 = 2𝜋√

𝑚ℎ2

𝑘𝑦𝑦
                                                (5)   

The exponents ns, nx, and nyy are assigned based on the specific form of damping 

corresponding to their components of foundation damping, and Givens (2013) recommended that 

all exponents can be taken as 2 assuming linear viscous damping.  

The soil hysteretic damping, s, is strain-dependent, and there are many suggested values 

for this parameter in the literature. Kramer (1996) summarized classical models for hysteretic 

damping, and Darendeli (2001) and Menq (2003) presented modern empirical models which 

consider overburden pressure and shear strain in a consistent way across multiple soil types. 

FEMA P-1050 suggests values for the soil hysteretic damping as a function of the soil class and 

shaking intensity (Table 1). 



www.manaraa.com

  20  
 

Table 1. Soil Damping Ratio in terms of Effective Peak Acceleration, SDS/2.5(1), and Site 

Class (FEMA, 2015) 

Site Class SDS/2.5 = 0 SDS/2.5 = 0.10 SDS/2.5 = 0.40 SDS/2.5 = 0.50 

A 0.01 0.01 0.01 0.01 

B 0.01 0.01 0.01 0.02 

C 0.01 0.01 0.03 0.05 

D 0.01 0.02 0.07 0.15 

E 0.01 0.05 0.20 (2) 

F (2) (2) (2) (2) 

 

(1) Use straight-line interpolation for intermediate values of SDS/2.5 

(2) Site-specific geotechnical investigation and dynamic site response analyses shall be performed  

 

As stated by Stewart (1999b) for the period lengthening ratio, 𝑇̃/T, the foundation 

damping, f, also increases significantly with the structure-to-soil-stiffness ratio, h/(Vs.T). Figure 

10 shows the effect of h/(Vs.T) on 𝑇̃/T and f  using different height-to-width ratios, h/B, for a 

specific case of a square footing (L=B), soil Poisson’s ratio () of 0.33, hysteretic damping (s) 

of 0, and mass ratio of 0.15. Based on Figure 10, 𝑇̃/T increases with h/(Vs.T) and decreases with  

h/B. In order to evaluate f, Equation 4 was used and the exponents ns, nx, and nyy were all taken 

as 2. Similar to 𝑇̃/T , it can be seen in Figure 10 that f  increases with h/(Vs.T) and decreases 

with  h/B. The behavior of f  suggests that lateral movements of the foundation dissipates energy 

more efficiently than foundation rocking because lateral movements of the foundation dominate 

at low h/B ratios and foundation rocking at high h/B ratios. 
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Figure 10. Period lengthening ratio (𝑻̃/T) and foundation damping (f ) versus the 

structure-to-soil-stiffness ratio (h/(Vs.T)) for a square footing and different h/B ratios. For 

this plot, v=0.33, B/L=1, s=0, mass ratio = 0.15, and exponents ns, nx, and nyy = 2. (NIST, 

2012) 

 

Similar trends to those shown in Figure 10 have been validated by studies conducted on 

instrumented buildings. For instance, Steward et al. (1999a and 1999b) showed that the most 

important parameter which controls inertial interaction is h/(Vs.T). Additionally, it was found 

that inertial SSI effects can be negligible for h/(Vs.T) <0.10, which the typical case of flexible 

structures such as moment frames over stiff soils or rock. However, as previously mentioned, 

inertial effects are usually significant for stiff structures such as shear walls and braced frames on 

soft soils. 
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B.1 Impedance Functions (Stiffness and Damping) for Shallow Foundations  

 

 Impedance functions represent the stiffness and damping characteristics of the 

foundation-soil system under dynamic loads. For a complete 3-D model, six dynamic 

impedances are needed, three translational and three rotational, in order to evaluate the dynamic 

equilibrium equation of a rigid foundation. These impedances are a function of the foundation 

geometry, the soil properties, and frequency of the structure-foundation-soil system. The general 

procedure to calculate dynamic impedances for a rigid shallow foundation can be summarized as 

follows: 

1. Model a massless and infinitely rigid foundation on a soil domain with elastic properties 

2. Apply a harmonic force or moment at a specific frequency and with unit magnitude (e.g., 

P(t) = P0e
it or M(t) = M0e

it) to the underlying soil domain 

3. Obtain the steady state vibration amplitude (U(t) = U0e
it+i or (t) = 0e

it+i) of the 

foundation under harmonic excitation  

4. Calculate the dynamic impedance K() as the ratio between the harmonic force acting on 

the foundation and its vibration amplitude as follows: 

𝐾(𝜔) =
𝑃(𝑡)

𝑈(𝑡)
=  

𝑃0𝑒
𝑖𝜔𝑡

𝑈0𝑒𝑖𝜔𝑡+𝑖𝜙
= 
𝑃0
𝑈0
𝑒−𝑖𝜙                                          (6) 

5. Write the classical solution for complex-valued impedance (Luco and Westman, 1971; 

Veletsos and Wei, 1971) to associate the real and imaginary parts with a dynamic 

(frequency-dependent) spring and dashpot  

𝐾(𝜔) =  𝑘̅ + 𝑖𝜔𝐶 𝑜𝑟 𝐾(𝜔) =  𝑘̅(1 + 2𝑖𝛽)                                        (7) 

𝑘̅(𝜔) =  𝑅𝑒(𝐾(𝜔)) =  
𝑃0
𝑈0
cos𝜙                                                (8) 
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𝐶(𝜔) =
𝐼𝑚(𝐾(𝜔))

𝜔
= −

𝑃0
𝑈0
sin 𝜙                                              (9) 

𝛽 = 
𝜔𝐶

2𝑘̅
                                                                         (10) 

6.  Repeat this procedure to the range of frequencies of interest 

 

Figure 11. Physical interpretation of dynamic spring and dashpot in vertical mode of 

vibration (Mylonakis et al., 2006) 

 

  Many analytical solutions for impedance functions have been developed for rigid circular 

and rectangular footings on the surface or embedded within the soil. These solutions were 

evaluated for a uniform, elastic, or visco-elastic half space. Pais and Kausel (1988), Gazetas 

(1991b), and Mylonakis et al. (2006) reviewed impedance functions for rigid rectangular 

footings resting on the surface of a half-space and suggested equations for evaluating the 

stiffness and damping parameters shown in Equation 7. These analytical solutions describe 

translational stiffness and damping along axes x, y, and z, and rotational stiffness and damping 

about those axes. These equations for stiffness and damping are a function of the foundation 

dimensions, soil shear modulus, G, Poisson’s ratio of the soil, , dynamic stiffness modifiers, j, 
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and the embedment modifiers, j. The general expression for evaluating the dynamic stiffness, kj, 

can be expressed as: 

𝑘𝑗 = 𝐾𝑗𝛼𝑗𝜂𝑗                                                                      (11) 

 In Equation 11, Kj  represents the static foundation stiffness at zero frequency for mode j. 

Equations for evaluating stiffness, damping, embedment factors, and dynamic correction factors 

suggested by Pais and Kausel (1988) are shown in Figure 12, 13, and 14. To evaluate Kj using 

the equations shown in Figure 12, the large strain shear modulus of the soil, G, needs to be 

computed. The following equation is typically used to evaluate the low strain shear modulus, G0, 

as a function of the shear wave velocity, Vs, and the soil mass density, s:  

𝐺0 = 𝜌𝑠𝑉𝑠
2                                                                      (12) 

 As mentioned above, the shear modulus, G, used to calculate the foundation stiffness 

should reflect the effects of modulus reduction with the increment of shear strain amplitude. 

ASCE/SEI 7-10 and FEMA P-1050 provide G/G0 ratios as a function of the site class and 

shaking intensity, and these ratios are presented in Table 2.  

 In order to consider the variability of the shear wave velocity measured in the free-field, 

Vs, and the additional weight of the structure in a soil profile, an average effective shear wave, 

Vs,avg, needs to be calculated. Consequently, the added weight of the structure can be considered 

by calculating the overburden-corrected shear wave, Vs,F, at a depth z using the following 

equation:  

𝑉𝑠,𝐹(𝑧) =  𝑉𝑠(𝑧) (
𝜎′𝑣(𝑧) +  Δ𝜎

′
𝑣(𝑧)

𝜎′𝑣(𝑧)
)

𝑛
2

                                               (13) 
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 The overburden-corrected shear wave velocity at a depth, Vs,F, evaluated in Equation 13 

is a function of the shear wave velocity measured in the free-field at depth z, Vs (z), effective 

stress from the self-weight of the soil at depth z, ’v(z), the increment of vertical stress due to 

weight of the structure at depth z, ’v(z),and the exponent n related to the soil type. The 

exponent n varies from 0.50 for granular soils (Hardin and Black, 1969; and Marcuson and 

Wahls, 1972) to 1.0 for cohesive soils with the plasticity index (PI) greater than 6.5 (Yamada et 

al., 2008). 

 

 

Figure 12. Elastic solutions for static stiffness of rigid footings at the ground surface and 

embedment correction factors (NIST, 2012) 
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Figure 13. Dynamic stiffness modifiers for rigid footings suggested by Pais and Kausel 

(1988) (NIST, 2012) 

 

 After computing Vs,F, the average effective shear wave velocity, Vs,avg, is calculated for 

the appropriate depth interval. Stewart et al. (2003) suggested the depth interval, zp, for 

computing Vs,avg. The following equation can be used for evaluating Vs,avg: 
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𝑉𝑠,𝑎𝑣𝑔 = 
𝑧𝑝

∑ (
Δ𝑧𝑖

(𝑉𝑠,𝐹(𝑧))𝑖
⁄ )𝑛

𝑖=1

                                                (14) 

𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 (𝑥 𝑎𝑛𝑑 𝑦):  𝑧𝑝 = 𝐵𝑒
𝐴, 𝐵𝑒

𝐴 = √𝐴/4 = √𝐵𝐿                                (15) 

𝑅𝑜𝑐𝑘𝑖𝑛𝑔 (𝑥𝑥):  𝑧𝑝 = 𝐵𝑒
𝐼 , 𝑥𝑥: 𝐵𝑒

𝐼 = √0.75𝐼𝑥
4 = √𝐵3𝐿

4
                                 (16) 

𝑅𝑜𝑐𝑘𝑖𝑛𝑔 (𝑦𝑦):  𝑧𝑝 = 𝐵𝑒
𝐼 , 𝑦𝑦: 𝐵𝑒

𝐼 = √0.75𝐼𝑦
4

= √𝐵𝐿3
4

                                 (17) 

 

Figure 14. Radiation damping for embedded rigid footings suggested by Pais and Kausel 

(1988) (NIST, 2012) 

 

 In practice, the impedance functions are not adjusted for non-rigid foundation conditions. 

Alternatively, springs and dashpots are distributed along elements with the same stiffness as the 
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foundation component. These distributed springs and dashpots allow the foundation to deform in 

a natural manner due to the loads imposed by the structure and the spring and dashpot reactions 

(i.e., similar to the Winkler’s approach). In order to do this with vertical springs, kz is normalized 

by the foundation area to compute the stiffness intensity or coefficient of subgrade reaction, 𝑘𝑧
𝑖 , 

as follows: 

𝑘𝑧
𝑖 = 

𝑘𝑧
4𝐵𝐿

                                                                        (18) 

Similarly, the dashpot intensity can be calculated as: 

𝑐𝑧
𝑖 = 

𝑐𝑧
4𝐵𝐿

                                                                        (19) 

Table 2. Soil Modulus Reduction in terms of Effective Peak Acceleration, SDS/2.5(1), and 

Site Class (ASCE, 2010) 

 Reduction Factor (G/G0) 

 SDS
(1)/2.5 

Site Class ≤0.10 0.40 ≥0.80 

A 1.00 1.00 1.00 

B 1.00 0.95 0.90 

C 0.95 0.75 0.60 

D 0.90 0.50 0.10 

E 0.60 0.05 (2) 

F (2) (2) (2) 

 

(1) SDS is the short period spectral response acceleration parameter defined ASCE/SEI 7-10; use straight-

line interpolation for intermediate values of SDS/2.5 

(2) Value should be evaluated from site-specific response analyses 

B.2 Beam-on-Nonlinear Winkler Foundation  

 

The beam-on-nonlinear Winkler foundation (BNWF) model was introduced with the 

pioneering work of McClelland and Focht (1958), and this approach has been broadly used for 
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the lateral analysis of piles under static loads (Matlock, 1970; and Cox et al. 1974) and dynamic 

loads (Penzien, 1970; Nogami et al., 1992; Boulanger et al., 1999). In addition to the lateral 

analysis of piles, the Winkler’s approach has been implemented with linear-elastic springs, 

similar to those presented in the previous section, in conjunction with gapping and damper 

elements (Chopra and Yim, 1985). Recently, BNWF models have been used for modeling the 

two-dimensional (2D) seismic behavior of shallow foundations with nonlinear springs allowing 

gapping and dashpot elements by Allotey and Naggar (2003 and 2007) as well as Raychowdury 

(2008). For the case of shallow foundations, BNWF models have the following attributes: 

 The soil-structure interaction phenomena can be described by one-dimensional nonlinear 

springs and dashpots distributed along the soil-foundation interface. 

 This model can represent the behavior of the soil-foundation system due to inelastic soil 

behavior (material nonlinearity) and uplift (geometric nonlinearity). In this context, a 

nonlinear material can follow a nonlinear load-displacement path, but it may not return 

along the same path due to permanent plastic deformations and cyclic degradation 

effects. Inelastic behavior refers to the development of gaps during cyclic loading. Thus, 

the BNWF can capture rocking, sliding, and permanent settlement of the footing. 

Hysteretic energy dissipation and radiation damping can also be evaluated. 

 A variable stiffness distribution and spring spacing can be used at the end of footings to 

account for larger reactions at the end of rigid foundations and to include the effect of 

rotational stiffness. 

 This model is numerically efficient to perform linear and nonlinear analyses 

Despite the aforementioned advantages of BNWF models, a limitation of this approach is its 

one-dimensional nature. Springs and dashpots respond only to loads parallel to their axes, so 
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loads acting in a perpendicular direction have no effect on the response of these elements.  

Therefore, plastic potential and flow rules cannot be explicitly incorporated in this model. 

Although BNWF models can have issues during implementation, this approach is frequently 

used in research and practice because of its simplicity and its ability to capture the experimental 

response of different soil-structure interaction problems. 

As mentioned above, the Winkler’s approach can be used with either linear or nonlinear 

materials. These two types of materials are used to model the spring constitutive behavior. 

Linear-elastic materials use an initial elastic stiffness and have an infinite capacity; however, this 

is not a realistic assumption for load demands during moderate earthquakes based on 

experimental work on shallow foundations (Gajan, 2006). Another material which is frequently 

used in practice is the elastic-perfectly-plastic (EPP) material. This material model has an initial 

elastic stiffness and it reaches its maximum stress capacity at a certain level of strain called 

“yielding strain.” After the yielding point, this material enters into a plastic region where it can 

strain without any increment in stress. For the seismic analysis of shallow footings, the 

maximum capacity of EPP materials used for the vertical springs is usually limited by the 

unfactored bearing capacity of the footing, while the maximum capacity for the lateral springs is 

limited by both the unfactored frictional resistance and the passive resistance of the footing. 

Since the transition between the elastic and plastic regions for EPP materials is very abrupt, this 

material model is an idealization of the real soil behavior.  

 There are also some nonlinear materials available to model the constitutive behavior of 

springs. Boulanger (2000) developed nonlinear material models for the seismic analysis of pile 

foundations. These models were then adapted and calibrated by Raychowdhury (2008) for the 

seismic analysis of shallow foundations. The nonlinear models used for shallow foundations 
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simulate the vertical load-displacement behavior, horizontal passive load-displacement behavior 

against one side of the footing, and horizontal shear-sliding behavior at the base of the footing, 

and they are denoted in Raychowdhury (2008) as QzSimple2, PxSimple1, TxSimple1, 

respectively. The original versions of these nonlinear materials presented by Boulanger (2000) 

are called QzSimple1, PySimple1, and TzSimple1. These materials are able to capture the “far-

field” elastic behavior and the “near-field” permanent displacements. A dashpot is used in 

parallel with the far-field elastic component to account for radiation damping, as can be seen in 

Figure 15.   

 

                (a)                                                                                         (b) 

Figure 15. (a) Idealization of nonlinear springs material models and (b) parameters of the 

backbone for the q-z material (Boulanger, 1999) 

 

The equations and parameters used to describe the QzSimple1 and TzSimple1 materials 

are similar to those for the PySimple1 material presented in Boulanger (1999). The elastic 

portion of the backbone curve of these materials can be described using the following equation: 

𝑞 =  𝑘𝑖𝑛𝑧                                                                           (20) 

Then, the range of the elastic portion can be defined by 
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ultrqCq 0                                                                           (21) 

 

where the instantaneous load, q, in Equation 20 is obtained as the product of the initial elastic 

stiffness (tangent), kin, and the instantaneous displacement, z. The load at the yield point, q0, 

described in Equation 21 is a function of the parameter controlling the range of the elastic portion, 

Cr, and the ultimate load, qult. 

The nonlinear portion of the backbone curve is described by 
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where the instantaneous load, q, in Equation 22 is a function of the previously defined parameters 

qult and q0, and the displacement at which 50% of ultimate load is mobilized, z50, displacement at 

the yield point, z0,  c and n are the constitutive parameters controlling the shape of the post-yielding 

portion of the backbone curve. A closure and drag spring in parallel are used to represent the gap 

component of the near-field spring. The closure component (qc - zg) is a simple bilinear spring, 

which is relatively rigid in compression and very flexible in tension. The nonlinear drag component 

(qd - zg) of the backbone curve is characterized by 
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Equation 23 describes the drag force on the closure component, qd, as a function of the 

previously defined parameters qult and z50, and the load at the start of the loading cycle, (𝑞0
𝑑 =

𝑞𝑑), displacement at the start of the current loading cycle, (𝑧0
𝑔
= 𝑧𝑔), and the ratio of the 

maximum drag (suction) force to qult, Cd. 
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Equations 20, 21, 22, and 23 were originally developed for pile foundations, but they can 

be used for the nonlinear springs developed by Raychowdhury (2008) for shallow foundations 

(i.e., QzSimple2, PxSimple1, and TxSimple1) using different values for the constants n, c, and 

Cr. Suggested values for the constants n, c, and Cr obtained from physical tests are summarized 

in Table 3, for pile and shallow foundations. A comparison between the backbone curves of the 

nonlinear springs developed for pile and shallow foundations is presented in Figure 16. The 

cyclic response of the QzSimple2, PxSimple1, and TxSimple1materials is shown in Figure 17. 

 

Table 3. Parameters for defining the spring material backbone curves (Raychowdhury, 

2008). 

 

Figure 16. Backbone curves for:  (a) q-z spring (QzSimple1 and QzSimple2); (b) p-x spring 

(PySimple1 and PxSimple1); and (c) t-x spring (TzSimple1 and TxSimple1 (adapted from 

Raychowdhury and Hutchinson, 2009) 

Material 

Type 

Soil 

Type 

OpenSees 

recommended value References 

Values used suggested by 

Raychowdhury (2008) 

    

(calibrated from pile 

tests)   

(calibrated from shallow 

footing tests if available) 

    Cr n c   Cr N c 

QzSimple1 clay 0.2 1.2 0.35 Reese & O'Neill (1988) 0.22 1.2 0.5 

  sand 0.3 5.5 12.3 Vijayvergiya (1977) 0.36 5.5 9.29 

PySimple1 clay 0.35 5 10 Matlock (1970) - - - 

  sand 0.2 2 0.5 API (1993) 0.33 2 1.1 

TzSimple1 clay 0.5 1.5 0.5 Reese & O'Neill (1988) - - - 

  sand 0.5 0.85 0.6 Mosher (1984) 0.48 0.85 0.26 
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      (a)                                                              (b)                                                (c)                                                                

 

Figure 17. Cyclic response of:  (a) q-z spring (QzSimple2); (b) p-x spring (PxSimple1); and 

(c) t-x spring (TxSimple1) (adapted from Raychowdhury and Hutchinson, 2009) 

 

 The nonlinear spring materials discussed above can reasonably capture results obtained 

with physical tests. For instance, Figure 18 shows a comparison of the BNWF model of 

Raychowdhury and Hutchinson (2009) with results obtained from centrifuge test SSG04-06 

reported by Thomas et al. (2005). The test conducted was a slow, cyclic test on a medium aspect 

ratio shear wall structure, with a vertical factor of safety, FSv = 2.3, resting on a dense sand with 

Dr = 80%. In general, the numerical model was able to capture the responses for moment versus 

rotation, settlement versus rotation, shear force versus sliding, and settlement versus sliding 

histories obtained from the centrifuge test. 

All the previously defined linear-elastic, elastic-perfectly plastic, and nonlinear material 

models used to model the flexibility of the soil using springs and dashpots can be implemented in 

OpenSees, Open System for Earthquake Engineering Simulation, (OpenSees, 2016) using 2D or 

3D models and either the direct or substructure approach for SSI.  
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Figure 18. Comparison of the BNWF model response with a centrifuge test for a medium 

aspect ratio shear wall structure on dense sand, with Dr = 80% and FSv = 2.3: (a) moment-

rotation; (b) settlement-rotation; (c) shear-sliding; and (d) settlement-sliding 

(Raychowdhury and Hutchinson, 2009) 

 

C. Kinematic Interaction 

 

Motions at the free surface or free-field motions (FFMs) can deviate from this condition 

due to the presence of a foundation system on or in the soil. This phenomenon is called 

“kinematic interaction” and the resulting motion at the foundation level is detonated foundation 

input motion (FIM). These deviations from the FFM can be attributed to three main mechanisms: 

base-slab averaging, embedment effects, and wave scattering. The stiffness of the foundation 

systems causes the averaging of the FFMs related to inclined and/or incoherent waves and this 

effect is known as “base-slab averaging.” Embedment effects result in the reduction of seismic 

ground motions with depth for embedded foundations, while wave scattering is caused by the 

scattering of seismic waves off of corners and asperities of the foundation. These three 

mechanisms resulting from kinematic interaction can be described by complex-valued transfer 
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functions relating free-field and foundation motions. In the following sections, base-slab 

averaging and embedment effects are explained and discussed. Wave scattering is not included 

because its effects on base-slab motions have been barely investigated and are usually ignored. 

C.1 Base-Slab Averaging 

 

 For vertically propagated coherent waves, the motion of a rigid foundation on the surface 

is the same as the FFM. On the other hand, motions of foundations at the surface are modified 

relative to the free-field motion when seismic waves are incoherent. The incoherence of incident 

waves at two different points refers to variations in their phase angle. This effect is also greater at 

higher frequencies. This phenomenon is caused by different ray paths and local heterogeneities 

in the geologic media through which seismic waves travel. Therefore, base-slab averaging is 

caused by waves which have an incidence angle relative to the vertical, v, or which are 

incoherence in time and space.  

 Some incoherence is predictable because it results from the wave passage. The wave 

passage effect is related to the presence of non-vertical incident waves which arrive at different 

points along the foundation of a building at different times. In this context, the apparent 

propagation velocity, Vapp, can be used to relate non-vertical incident waves with an apparent 

horizontal velocity using v, as shown in Figure 19a.  

 Lagged coherence models are used to quantify the incoherence that remains when waves 

are aligned to have common arrival times, which is stochastic in nature. Stochastic incoherence 

results from source-to-site heterogeneities in the seismic path of travel, which scatters seismic 

waves. Array studies such as Abrahamson et al. (1991) and Ancheta et al. (2011) explained and 

discussed this phenomenon of lagged coherency. 
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Translational base-slab motions are reduced relative to the free field, and torsional 

rotation of the base slab takes place due to the presence of incoherent or non-vertically incident 

waves (Stewart et al, 1998). The base-slab translation decrement as well as the appearance of 

torsion and rocking increases with the frequency. This frequency-dependent behavior is mainly a 

product of the effective size of the foundation relative the seismic wavelengths at higher 

frequencies. 

The reduction of base-slab translation as well as the introduction of torsion and  rocking are more 

significant with increasing frequency. The frequency-dependence of these effects is mainly 

associated with the increment of the effective size of the foundation relative the seismic 

wavelengths at higher frequencies.  

There are many analytical equations for predicting the relationship between the 

foundation input motion (FIM) and the free-field motion (FFM) for the case of inclined, 

otherwise coherent, shear waves. A model was suggested by Mylonakis et al. (2006) which 

considers wave passage effects to evaluate transfer functions, Hu. This model relates the 

acceleration, velocity, or displacement of the foundation input motion, uFIM, and the free-field 

motion, ug, as follows: 

𝑢𝐹𝐼𝑀 = 𝐻𝑢𝑢𝑔                                                                             (24) 

𝐻𝑢 = 

sin (𝑎0
𝑘 (

𝑉𝑠
𝑉𝑎𝑝𝑝

))

𝑎0
𝑘 (

𝑉𝑠
𝑉𝑎𝑝𝑝

)
, 𝑎0
𝑘 ≤

𝜋

2

𝑉𝑎𝑝𝑝

𝑉𝑠
                                                    (25) 

𝐻𝑢 = 
2

𝜋
, 𝑎0
𝑘 >

𝜋

2

𝑉𝑎𝑝𝑝

𝑉𝑠
                                                                   (26) 
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𝑎0
𝑘 = 

𝜔𝐵𝑒
𝐴

𝑉𝑠
                                                                             (27) 

In Equation 27 the term 𝐵𝑒
𝐴 is related to the foundation area and was defined in the previous 

section. From arrays studies (Ancheta et al., 2011), Vapp ranges from approximately 2.0 km/s to 

3.5 km/s, so a reasonable estimation of the velocity ratio, Vapp/Vs, for typical soils is 

approximately 10. The transfer function obtained using the equations 24 to 27 is shown in Figure 

19b and labeled as “wave passage only.” This model for wave passage alone produces modest 

base-slab reductions in ground motions. Indeed, transfer functions obtained from recorded 

foundation input motions and free-field motions are commonly lower at high frequencies than 

those predicted by wave passage models.  

A semi-empirical model was developed based on the analytical solutions proposed by 

Veletsos and Prasad (1989) and Veletsos et al. (1997). In these studies, spatially variable ground 

motions were applied to a rigid foundation perfectly bonded to the soil. These studies evaluated 

the responses of rigid, massless, circular and rectangular foundations on the surface of an elastic 

half-space to incoherent S-waves propagating either vertically or at an angle v using numerical 

modeling. These results showed that the transfer function, Hu, obtained is independent of the 

foundation geometry, but it is strongly dependent upon a parameter, a, related to the lagged 

coherency and wave inclination. The resulted transfer function for vertically propagating waves 

(adapted from Veletsos and Prasad, 1989) can be expressed as: 

𝐻𝑢 =  {
1

𝑏0
2
[1 − exp (−2𝑏0

2)(𝐼0(2𝑏0
2) + 𝐼1(2𝑏0

2)]}

1
2

                                  (28) 

𝑏0 = (√4/𝜋)𝜅𝑎𝑎0
𝑘                                                                (29) 
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where I0 and I1 are modified Bessel functions, zero and first order, respectively. The Bessel 

function summation in Equation 28 can be represented in terms of power series and exponential 

functions (Watson, 1995) as follows: 

(𝐼0(2𝑏0
2) + 𝐼1(2𝑏0

2)) =  

{
 
 

 
 1 + 𝑏0

2 + 𝑏0
4 +

𝑏0
6

2
+ 
𝑏0
8

4
+
𝑏0
10

12
    𝑓𝑜𝑟 𝑏0 ≤ 1

exp(2𝑏0
2) [

1

√𝜋𝑏0
(1 − 

1

16𝑏0
2)]    𝑓𝑜𝑟 𝑏0 > 1

                          (30) 

 Kim and Stewart (2003) developed a semi-empirical model for a by matching model 

predictions to observed variations between foundation input and free-field motions from 

instrumented buildings. This model can be written as: 

𝜅𝑎 = 0.00065𝑉𝑠,            200 < 𝑉𝑠 < 500𝑚 𝑠⁄                                          (31)  

 Values of a obtained from Equation 31take into account the combined effects of 

incoherence from wave passage and stochastic processes as well as Fourier amplitude variability. 

Transfer functions calculated with this semi-empirical approach for upper and lower limits of a 

are shown in Figure 19b. 

 

Figure 19. Base-slab averaging effects: (a) schematic geometry of a foundation subjected to 

inclined shear waves; (b) Hu using wave passage only and the semi-empirical method for 

incoherent waves (NIST, 2012) 
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C.2 Embedment Effects 

 

 For embedded foundations with lateral walls, such as buildings with basement levels, 

foundation-level motions experience a reduction as a result of the ground motion reduction with 

depth below the surface. Analytical solutions are available to consider embedment effects for 

rigid cylinders embedded in a uniform soil of finite or infinite thickness (i.e., half-space). 

Elsabee et al. (1977) and Dominguez and Roësset (1978) presented analytical solutions in the 

form of transfer functions for circular and rectangular embedded foundations subjected to 

vertically propagating coherent shear waves. Other studies conducted by Kausel et al. (1978) and 

Day (1978) describe FIM at the base of embedded cylinders as a function of FFMs. The FFM for 

these cylinders showed a reduction in its translation mode when subjected to vertically 

propagating coherent shear waves because of ground motion reductions with depth and wave 

scattering. In addition, as a result of differential displacements imposed to the cylinders over 

their embedment depth, rotations in the vertical plane developed. As a result of the 

aforementioned studies, transfer functions for translational and rotational motions, Hu and Hyy, 

were adapted for rectangular foundations as follows: 

𝐻𝑢 = 
𝑢𝐹𝐼𝑀
𝑢𝑔

= cos (
𝐷

𝐵𝑒
𝑎0
𝑘) =  cos (

𝐷𝜔

𝑉𝑠
),    

𝐷𝜔

𝑉𝑠
< 1.1                             (32) 

𝐻𝑢 = 0.45,
𝐷𝜔

𝑉𝑠
> 1.1                                                        (33) 

𝐻𝑦𝑦(𝜔) =  
𝜃𝐿

𝑢𝑔
=  0.26 [1 − cos (

𝐷𝜔

𝑉𝑠
)],    

𝐷𝜔

𝑉𝑠
<
𝜋

2
                                      (34) 

𝐻𝑦𝑦(𝜔) = 0.26,
𝐷𝜔

𝑉𝑠
>
𝜋

2
                                                      (35) 
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where D is the embedment depth and Vs is the average effective profile velocity, Vs,avg. The 

above equations suggested for evaluating translational and rotational transfer functions are 

plotted in Figure 20b. It can be seen in Figure 20b that there is a significant reduction in the FFM 

at high frequencies, at approximately 70% of the fundamental frequency of the soil column, fE. 

By further inspection of Figure 20b, it is seen that the effect of the embedment on the de-

amplification of the ground motions is greater in comparison with base-slab averaging. On the 

other hand, the rotational transfer function, Hyy, increases with frequency. Predictions for 

cylinder models using the previously developed transfer functions for this case showed good 

agreement with records from nuclear reactor structures and embedded buildings (Stewart and 

Tileylioglu, 2007).  

All the equations previously presented in this section need to be carefully used. Most of 

these equations were calibrated for specific foundation conditions, soil types, and wave 

propagation directions, so their application is limited to those unique scenarios. 

 

Figure 20. Foundation subjected to vertically incident shear waves: (a) schematic 

geometry; (b) transfer functions for foundation translation and rocking (NIST, 2012) 
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D. Eccentrically Braced Frames  

 

Eccentrically braced frames (EBFs) are a hybrid lateral force-resisting systems which 

combine the lateral stiffness of steel concentrically braced frames and the ductility of steel 

moment resisting frames. Therefore, EBFs have high elastic stiffness, stable inelastic response 

under cyclic lateral loading, and excellent ductility and energy dissipation capacity. Since these 

types of ductile frames have been successfully implemented in regions of high seismicity, they 

have been a matter of research for many years.  Research related to EBFs started in the mid-

1970s (Roeder and Popov, 1978), continued through the 1980s (Engelhardt and Popov, 1989, 

1992; Kasai and Popov, 1986a, 1986b; Ricles and Popov, 1987; Whitaker, Uang, and Bertero, 

1987), and it is still currently active (Chao and Goel, 2006, Richards and Uang, 2006; Okazaki et 

al., 2006; Prinz and Richards, 2009; Richards, 2009). 

EBFs use special segments beam called links which act as structural fuses under severe 

earthquakes, experiencing inelastic deformations while other structural elements behave 

essentially elastic. The typical arrangement of links in EBFs are at the middle of beams, between 

two braces, and at the end of beams, adjacent to columns (Figure 21). Links either yield in shear 

or flexure (Figure 22); however, the links that yield in shear typically have a greater rotational 

capacity than those that yield in flexure. Links that yield in shear are called “short links” and are 

typically used in the design of EBFs.  

In the U.S., provisions for the analysis, design, and detailing of EBFs are included in the 

ANSI/AISC 341-10, Seismic Provisions for Structural Steel Buildings (ANSI/AISC, 2010). For 

these types of ductile structures, ANSI/AISC 341-10 requires that columns, braces, and beams be 

designed following capacity design principles; therefore, the full strength and deformation 

capacity can be developed without failure of any individual column, brace, or beam and without 
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the formation of a soft story. For this purpose, structural elements must be designed using the 

expected shear capacity of the links. In addition, ANSI/AISC 341-10 limits the rotation of short 

links to 0.08 radians. This limitation is primarily based on experiments conducted at the 

University of California at Berkeley in the 1980s (Hjelmstad and Popov, 1983; Malley and 

Popov, 1984; Kasai and Popov, 1986a; Ricles and Popov, 1989; Engelhardt and Popov, 1992). 

Special considerations are needed for EBFs with link-to-column connections since they have less 

inelastic rotation capacity than those with mid-span links (Okasaki et al., 2006). 

 

Figure 21. Typical eccentrically braced frames with (a) mid-span links and (b) links with 

column connections 

 

 To achieve the goals of the EBF design, it is necessary for the connections between the 

structure and the foundation, as well as the foundation itself to develop the full resistance and 

deformation capacity of the EBF. Unfortunately, current foundation design criteria do not require 

foundations to develop that same capacity, and uplift can occur if the foundation is 

underdesigned. If uplift is expected, this effect needs to be considered in the analysis of EBFs 

along with SSI in order to ensure that the assumed energy dissipation capacity is achieved. In 

addition, as mentioned before, including SSI effects on the seismic analysis of EBFs can enhance 

the accuracy of the analytical simulations.    
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Figure 22. Typical link inelastic behavior (adopted from Prinz, 2010) 

 

III. Methodology  

 

As mentioned before, EBFs are sometimes used as the lateral load-resisting system of 

buildings in high seismic regions due to their efficient seismic performance and ability to 

accommodate architectural features. Nevertheless, achieving an economical and efficient design 

for this type of steel frame is challenging. In EBF design, the size of structural members depends 

on the expected shear capacity of the links, which usually have the same size as the beam. To 

achieve good seismic performance, beam sizes need to vary at each floor (Popov et al., 1992), so 

a balance between economy and performance is difficult to obtain.  

In addition to the design considerations for the superstructure, connections between the 

foundation system and the foundation itself for EBFs need to be designed to develop the full 

capacity and deformation of these structures. This means that uplift can occur if the foundation 

system is underdesigned, so this effect needs to be taken into account. Therefore, studying the 

interaction between the structure, foundation system, and soil beneath has the advantage of being 

able to evaluate the collective performance of the system and include the additional energy 

dissipation capacity of the foundation-soil interface.  
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In this study, the seismic performance of EBFs considering SSI effects is investigated and 

compared with the commonly used support assumption of a fixed base. To achieve this goal, a 3-

story office building is analyzed and evaluated using both the fixed base and flexible base. The 

building geometry and mass was slightly modified from a SAC study (Gupta and Krawinkler, 

1999). A specific site in California was chosen to conduct the analyses due to the availability of 

site characterization data and its high seismic demand. The 3-story EBF was preliminary sized 

using the Equivalent Lateral Force (ELF) procedure according to ASCE/SEI7-10 and 

ANSI/AISC 341-10. In addition, the same frame was redesigned following the guidelines 

available in Chapter 19 of ASCE/SEI 7-10 for considering SSI along with the ELF procedure.  

Therefore, two frames were analyzed using the preliminary design with both a fixed and flexible 

based, and then the frame re-designed considering SSI was also evaluated with a flexible base. 

Nonlinear static analysis (NSA) and nonlinear response history analysis (NRHA) were 

conducted to evaluate the seismic performance of the EBFs described. Inter-story drifts, residual 

drifts, link rotations, and column demands were computed for each frame and then compared.  

A. Building Description  

 

 Because SSI effects can be significant for stiff structures, a 3-story building was chosen 

for this study. The building prototype is similar to the one used in Prinz (2010). The EBFs were 

placed around the perimeter of the building. The typical bay width and story height of this 

building were 30 ft and 13 ft; respectively (Figure 23).  A link length of 4 ft was used at every 

story. The building was assumed to be used for offices, and its importance factor (I) was taken as 

1 according to ASCE/SEI 7-10. Accidental torsion for the linear analyses was also considered by 

assuming an eccentricity of 5% of the building plan between the center of mass and the center of 
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rigidity (ASCE, 2010).  The total seismic weight of the 3-story EBF is 9,755 kips, and the 

weights of each story can be seen in Figure 23.  

The Gilroy 2 site in California was used for the design of the 3-story EFBs. This site has 

site classification D with a design spectral acceleration at 0.20 seconds, SDS, of 1.002 and a 

design spectral acceleration at 1.0 seconds, SD1, of 0.654 in terms of gravity. Therefore, the 

seismic design category of the building used for this study is D, thus EBFs can be use as the 

lateral load-resisting system for this building (ASCE, 2010). A response modification coefficient, 

R, of 8 and a deflection amplification factor, Cd, of 4.0 were used for the design of the EBFs 

based on ASCE/SEI 7-10.  

 

Figure 23. Frame configuration, dimensions, and floor weights for the 3-story EBFs 

(modified from Prinz, 2010) 

 

B. Site Characterization 

 

The location plan for the Gilroy 2 site is shown in Figure 24. The soil parameters (Table 

4) and the geophysical (Figure 25) were obtained from Curras (2000). The foundations of the 3-
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story building were placed on the topmost sand layer with a soil unit weight of 19 kN/m3 and an 

effective friction angle of 38 degrees. The water table was located at a depth of 22.5 m. The 

shear wave velocity profile is presented in Figure 25. Based on this profile, the average shear 

wave velocity for the first 30 m, 𝑉̅𝑠30, is 283.10 m/s, so the site class according to ASCE/SEI 7-

10 is D. Additionally, the average shear wave velocity for the entire soil profile, 𝑉𝑠̅, is 467.3 m/s, 

and the shear wave velocity, Vs, of the sand layer where the foundations were placed is 200 m/s. 

 

Figure 24. Map of the San Francisco Bay area locating the Gilroy 2 site 

 

The shear modulus degradation curves and the damping curve for the Gilroy 2 site are 

shown in Figure 26. This figure shows curves for the sand and clay soils existing in this site as 

well as for the bedrock. 
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Table 4. Soil strength parameters for the Gilroy site 2 (Curras, 2000) 

Depth 

(m) 

Soil 

Type 


(kN/m3) 

’ 

(deg) 

k 

(MN/m3) 
Su/’vo OCR 50 

0-7.5 Sand 19 38 42.7 - - - 

7.5-10.5 Clay 19 - - 0.35.OCR0.80 3.0 0.005 

10.5-22.5 Sand 19 42 61.0 - - - 

22.5*-42 Clay 19 - - 0.35.OCR0.80 4.0 0.005 

*Ground water table at 22.5 m 

Where: 

 = total unit weight,  

’ = effective friction angle,  

k = soil modulus,  

Su = undrained shear strength of the soil,  

’vo = initial effective vertical stress,  

OCR = over-consolidation ratio,  

50 = strain corresponding to 50% of the maximum principal stress difference on triaxial test 

 

 

Figure 25. Shear wave velocity profile for the Gilroy 2 site (Curras, 2000) 
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Figure 26. (a) Shear modulus and (b) damping curves for the different soils at Gilroy site 2 

(Curras, 2000) 

C. Eccentrically Braced Frame Designs 

 

 Because the gravity system of the building was assumed to be pin-connected to the 

lateral load-resisting system, the EBFs were decoupled from the spatial building structure and 

analyzed using 2-D models. Subsequently, the EBFs were designed using the factored forces 

obtained from the structural analysis conducted in SAP2000 (Computers and Structures Inc., 

2009), and then those forces were used to design the structural elements according to 

ANSI/AISC 341-10. The load factor used to amplify the seismic forces was the ratio of the 

expected shear capacity of the link to the shear force in the link obtained from the structural 

analysis. This was done in order to follow the capacity based approach required for this type of 

steel frame. 
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 Two sets of equivalent lateral forces were obtained for designing the EBFs. One set of 

forces was calculated to perform the structural analysis without SSI (EBF1FB) and the other set of 

forces was used to conduct the structural analysis considering SSI (EBF1SSI) based on ASCE/SEI 

7-10. The equivalent lateral forces applied at each level for the two static analyses conducted are 

presented in Table 5, and the EBF designs are shown in Figure 27. The procedure for considering 

SSI according to ASCE/SEI 7-10 just reduces the static seismic forces due to the period 

elongation using the response spectrum approach, and then the structural analysis is conducted 

using a fixed base. To account for the effects of SSI, the base shear (V) according to ASCE/SEI 

7-10 can be reduced as follows:  

𝑉̃ = 𝑉 −  Δ𝑉                                                                              (36) 

Δ𝑉 = [𝐶𝑠 − 𝐶̃𝑠 (
0.05

𝛽
)

0.4

] 𝑊̅ ≤ 0.3𝑉                                                  (37) 

𝛽 = 𝛽0
0.05

(
𝑇̃
𝑇)

3                                                                                  (38) 

where 𝑉̃ is the base shear considering SSI and V is the reduction in V due to SSI. The terms 𝐶𝑠, 

𝐶̃𝑠, 𝛽, and 𝑊̅ in Equation 37 and 39 are the seismic design coefficient for a fixed base, seismic 

design coefficient for a  flexible base, fraction of critical damping for the structure foundation 

system, and the effective seismic weight of the structure, respectively.  
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Table 5. Equivalent lateral forces for the EBFs 

Equivalent Lateral Force (kips) 

Floor 
Without SSI 

(EBF1FB) 

Including SSI 

(EBF1SSI) 

1 177.99 148.40 

2 106.25 88.60 

3 50.34 42.00 

 

D. Foundation Design 

 

 The foundation system was designed using the capacity of the structural elements from 

the superstructure. The bearing capacity was calculated using the soil parameters of the topmost 

sand layer presented in Table 4. Equations initially proposed by Terzaghi (1943) and later 

modified by Meyerhoff (1963) were used for evaluating the ultimate bearing capacity. The 

ultimate lateral capacity of the proposed foundation was evaluated using both its passive and 

friction resistance. Combined footings were used as a foundation for the EBFs while isolated 

footings were adopted as foundations for the gravity columns. The top of the foundation system 

was assumed to be at the grade level of the building. In addition, the slab on grade was designed 

to act as a rigid diaphragm at the grade level.  Resistance factors for bearing capacity for seismic 

design suggested by FEMA P-750, NEHRP Recommended Seismic Provisions for New Buildings 

and Other Structures (FEMA, 2009), were applied to the ultimate bearing capacity calculated. 

Figure 28 shows the foundation plan for the building analyzed. 
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            (a)                                                                                  (b) 

Figure 27. EBF designs based on ASCE/SEI 7-10 and ANSI/AISC 341-10 (a) EBF without 

SSI (EBF1FB); and (b) EBF considering SSI (EBF1SSI) 

 

 

Figure 28. Foundation plan for the building analyzed 
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E. Evaluation of Foundation Springs and Dashpots  

 

 The foundation system designed for the building used in this study consists of shallow 

footings interconnected through the slab on grade. The methodologies described for inertial 

interaction were used to develop the foundation springs and dashpots for the EBFs. Parameters 

such as foundation dimensions, soil properties, embedment depth, and the fundamental period of 

the structure were used to compute the foundation impedances. The equations proposed by Pais 

and Kausel (1988) were chosen to evaluate the foundation springs and dashpots. Modeling of the 

EBF foundation and site conditions included the following: 

 Determination of the average effective profile velocity for the shallow foundation of the 

EBFs, considering foundation dimension and overburden pressures from the structures 

 Determination of the structure-to-soil stiffness ratio for estimating the importance of 

inertial interaction effects 

 Calculation of the combined footing stiffness and damping in the vertical and horizontal 

directions, as well as the rotational component for stiffness and damping 

 Distribution of springs and dashpots along the foundation in the numerical model 

 Evaluation of the limiting spring forces 

For the typical case of soil profiles that vary with depth, foundation stiffness and 

damping coefficients should be based on an average effective profile velocity evaluated over an 

effective profile depth, zp. Using zp and considering the overburden pressure due to the weight of 

the building, ’v(z), the average effective profile velocity, Vs,avg, is calculated using Equation 

14. The ’v(z) was calculated using the classical Boussinesq stress distribution theory. Table 6 

shows the values of zp and Vs,avg for the different vibration modes used for modeling the EBFs. 
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Table 6. Effective profile depths and average effective profile velocities 

Vibration Mode zp (ft) Depth Range (ft) Vs,avg (ft/s) Equation 

Horizontal Translation (x) 10.0 3.5 to 13.5 708.40 15 

Rocking along y-axis (yy) 14.10 3.5 to 17.6 694.30 17 

 

In order to anticipate whether inertial interaction effects are significant for the building 

analyzed, the structure-to-soil stiffness ratio (h/(Vs.T)) proposed by Stewart (1999b) was 

calculated. The effective height (h) and the fundamental period of vibration (T) with a fixed base 

were obtained from the modal analysis conducted for the EBF without considering SSI. The 

value of Vs used for this calculation was Vs,avg for the rocking vibration mode. The parameters h, 

Vs, and T used to calculate h/(Vs.T) were 29.95 ft, 694.3 ft/s, and 0.72 sec, respectively, and the 

value obtained for h/(Vs.T) was 0.06. Because h/(Vs.T) < 0.10, inertial interaction effects are not 

expected to be considerable for the building analyzed (Stewart et al., 1999a, 1999b).   

 To incorporate the flexibility of the soil in the numerical models of the EBFs, the 

foundation stiffness and dashpot were computed, and they are shown in Table 6. Before 

computing the foundation impedances, the low strain shear modulus, G0, was evaluated using the 

unit weight of soil for the uppermost sand layer and the values of Vs,avg presented in Table 6. The 

large strain shear modulus, G, was calculated using a ratio G/G0 of 0.50 as suggested in Table 2, 

for the SDS and site class of the site analyzed. 

 For the case of the dynamic stiffness, kdyn , the dynamic stiffness modifier, , was 

evaluated using the frequency corresponding to the first-mode period of the EBF with a flexible 

base (𝑇̃=0.80 sec) originally designed without considering SSI effects. The period of vibration 

for the flexible base condition was calculated using Equation 2 along with the static springs and 

dashpots calculated with the equations suggested by Pais and Kausel (1988). Then, the kdyn was 
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evaluated as the product of andthe embedded static stiffness, kemb. In addition, the soil 

damping, s, was taken as 0.07 from Table 1, for the SDS and site class corresponding to the 

Gilroy site 2. The dynamic stiffness was computed using Equation 11 while the dashpot constant 

was evaluated as follows: 

𝑐 = 2𝑘𝑑𝑦𝑛 (
𝛽𝑒𝑚𝑏 + 𝛽𝑠

𝜔
)                                                          (39) 

 The terms emb and  in Equation 39 are the damping as a ratio considering the 

embedment depth of the footing and the angular frequency of the soil-foundation system, 

respectively.  

Table 7. Foundation stiffness and damping parameters for the EBF1SSI 

Vibration mode 
G 

(ksf) 

kemb (kip/ft(1);  

kip-ft/rad(2)) 







emb c (kip-s/ft) 

Vertical Translation,  

z-direction (kz, cz) 
913.70 87,764.80 1.0 0.065 2,978.50 

Horizontal Translation,  

x-direction (kx, cx) 
913.70 74,574.60 1.0 0.057 2,366.55 

Rocking along y-axis,  

yy –direction (kyy, cyy) 
898.30 28,949,064.90 1.0 0.001 512,830 

 

(1) Units for translational stiffness 

(2) Units for rotational stiffness 

 

As shown in Table 7, the  is 1.0; therefore, kdyn is equal to kemb. Subsequently, the 

intensity of the vertical stiffness, kz, and dashpot, cz, were calculated using Equation 18 and 19; 

respectively. A value of 219.4 kip/ft3 was obtained for kz while cz was estimated as 7.45 kip-s/ft3.  
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The intensity of the vertical stiffness cannot be used along the entire length of the footing 

without including the effect of the rotational stiffness because the vertical soil reaction is not 

uniform. The vertical soil reaction tends to increase at the edges of the foundation, so assigning a 

uniform value of kz underestimates the vertical stiffness at these locations. Using a similar 

procedure of assigning a uniform cz would overestimate the radiation damping due to rocking. To 

correct for the underestimation of rotational stiffness, stiffer springs are assigned along the 

foundation edge, as shown in Figure 29. These springs with higher stiffness along with the 

springs the interior reproduce the effect of the rotational stiffness. The distance where the springs 

with higher stiffness are assigned is denoted as ReL, where Re is called the end length ratio. ATC 

40 (1996) suggests that Re should be B/6 (B = footing width) while Harden et al. (2005) suggests 

values for Re as a function of the footing aspect ratio, B/L. NIST (2012) suggests that Re can vary 

between 0.30 to 0.50 and presents the following equation to evaluate the stiffness intensity ratio, 

Rk, for springs at the edges of footings: 

𝑅𝑜𝑐𝑘𝑖𝑛𝑔 (𝑦𝑦): 𝑅𝑘,𝑦𝑦 =
(
3𝑘𝑦𝑦
4𝑘𝑧𝐵𝐿3

) − (1 − 𝑅𝑒)
3

1 − (1 − 𝑅𝑒)3
                                           (40) 

To correct for overestimation of rotational damping, the dashpot intensities over the full length 

and width of the foundation are scaled down by a factor, Rc, as follows: 

𝑅𝑜𝑐𝑘𝑖𝑛𝑔 (𝑦𝑦): 𝑅𝑐,𝑦𝑦 = 

3𝑐𝑦𝑦
4𝑐𝑧𝐵𝐿3

𝑅𝑘,𝑦𝑦(1 − (1 − 𝑅𝑒)3) + (1 − 𝑅𝑒)3
                                  (41) 

For this study, Re was used as 0.375 and the resulting values for Rkyy and Rcyy were 2.95 and 0.52, 

respectively. 
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Figure 29. Vertical spring distribution to reproduce the rotational stiffness kyy (NIST, 2012) 

 

The foundation stiffness and dashpot were used for constructing linear-elastic (LE), 

elastic-perfectly plastic (EPP), and nonlinear springs (NL). Linear-elastic springs were estimated 

using only the foundation stiffness calculated and they were modeled along with dashpots by 

using a parallel material.  For the case of elastic-perfectly plastic springs, the foundation stiffness 

evaluated was used as the slope of the force-displacement relationships. The ultimate capacity of 

EPP springs in the vertical direction was taken as the ultimate bearing capacity times the area of 

each spring (qu.dA). Once the maximum capacity of the spring is calculated, the yielding 

displacement can be evaluated. The same process was followed to evaluate EPP springs in the 

horizontal direction, where the maximum capacity of these springs was taken as the sum of the 

ultimate passive and frictional resistance of the footing. The EPP springs were combined with 

dashpots in a parallel material. 

The ultimate bearing capacity, ultimate passive resistance, and ultimate frictional 

resistance used for calculating the maximum capacity of EPP springs were computed using the 

equations suggested in AASHTO 2010, AASTHO LRFD Bridge Design Specifications 

(AASHTO, 2010).  Figure 30 shows the force-displacement relationship evaluated for vertical 

EPP springs for this study. Lower and upper bounds for the force-displacement relationships 
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were also included in Figure 30 following the recommendations of NIST (2012) and ASCE/SEI 

41-13.  These documents state that lower and upper bounds need to be evaluated for accounting 

for variability of the soil properties. Since there is no information about differences for the soil 

tests conducted at the site, upper and lower bound were estimated as two times and half the 

spring stiffness and maximum capacity computed (NIST, 2012; ASCE, 2013), respectively. 

These upper and lower bounds are shown as an illustration of the suggested presentation of these 

types of load-deformation relationships, and only the expected curve was used for this study. 

 

Figure 30. Force-displacement relationship for interior vertical springs 

 

 Nonlinear springs were also used for the numerical simulations in this study. The 

nonlinear springs used for modeling SSI were those developed by Boulanger (2000) for pile 

foundations and later calibrated by Raychowdhury (2008) for the seismic analysis of shallow 

foundations. Parameters for the backbones curve for the springs QzSimple2, PxSimple1, and 

TxSimple1 were taken from Table 3. For the QzSimple2 material, the backbone curve for sands 
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suggested by Vijayvergiya (1977) was used. The ultimate vertical capacity (qult) of individual 

springs and the foundation damping ratio in the vertical direction previously computed were also 

used. A suction of 0.10 times qult was adopted. As the last parameter needed for this material, the 

displacement at which 50% of qult is mobilized in monotonic loading, z50, was evaluated using a 

relationship suggested by Boulanger (2000): 

𝑧50 = 
1.39𝑞𝑢𝑙𝑡
𝑘𝑧𝑖

                                                                (42) 

The term kzi in Equation 42 refers to the vertical stiffness of a single spring. The 

backbone curve proposed for sands in API (1993) was used for the material Pxsimple1. The 

passive resistance (pult) of the footing and the foundation damping ratio in the horizontal 

direction computed were used. A drag resistance factor, Cd, of 0.10 times pult was applied. The 

displacement at which 50% of pult is mobilized in monotonic loading, y50, was computed using 

the following relationship (Boulanger, 2000): 

𝑦50 = 
0.542𝑝𝑢𝑙𝑡

𝑘𝑥
                                                              (43)   

The backbone curve for sands suggested by Mosher (1984) was used for the TxSimple1 

material. The friction resistance (tult) of the footing and the foundation damping ratio in the 

horizontal direction computed were used. The displacement at which 50% of tult is mobilized in 

monotonic loading, z50, was also assessed using a relationship suggested by Boulanger (2000): 

𝑦50 = 
2.05𝑡𝑢𝑙𝑡
𝑘𝑥

                                                              (43)   

All the spring materials evaluated above were used along with the Winkler’s approach for 

considering inertial interaction in numerical models with a flexible base. 
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F. Numerical Modeling  

 

For the nonlinear analyses, two-dimensional models were used to analyze the EBFs using 

OpenSees Navigator (Schellenberg and Yang, 2016). OpenSees Navigator is a MATLAB-based 

graphical user interface (GUI) which is used for pre- and post-processing OpenSees files. All 

columns, beams, and braces were modeled using nonlinear beam-column elements with inelastic 

fiber sections (i.e., elements with distributed plasticity). Floor masses were lumped into the 

column nodes at each story.  Full dead load plus 25% of the unreduced live load were assigned to 

the columns nodes at each story (ASCE, 2010; PEER, 2010). Braces were assumed to have fully-

restrained end connections. All beam-column connections were also assumed to be fully 

restrained. Columns were oriented to resist lateral forces through strong-axis bending.  

The material behavior for all beams, columns, and braces was modeled using a Giuffre-

Menegotto-Pinto material model (Menegotto and Pinto, 1973) with isotropic strain hardening 

and yield strength of 50 ksi, called Steel 02 in OpenSees. The dynamic behavior of the EBF 

shear links was idealized using the analytical model proposed by Ramadan and Ghobarah (1995) 

and modified slightly by Richards (2004). In order to use this material model in OpenSees 

Navigator, EBF links were idealized as an elastic beam element with lumped plasticity and 

translational springs in parallel at each end. These springs were modeled using an elastic-

perfectly-plastic material, and then they were combined into a single uniaxial parallel material 

model.  The parallel material was then applied to a zero-length elements. Figure 31a and 31b 

show the proposed link element and its constitutive behavior, respectively. The validation of the 

experimental test conducted on EBF links following the protocol outlined in the 2002 AISC 

Seismic Provisions (ANSI/AISC, 2002) is shown in Figure 31c and 31d. 
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Figure 31. Description of the EBF link model used: (a) EBF link element; (b) constitutive 

behavior of the parallel springs; (c) hysteretic link behavior – experimental test; and (d) 

hysteretic link behavior – OpenSees Model (adapted from Prinz, 2010) 

 

 A co-rotational formulation was used to simulate large deformations and P-delta effects. 

The effect of the gravity system was accounted for using a leaning column, which was pinned at 

the base and assumed to be axially rigid but without any lateral strength. Therefore, the lateral 

stiffness and strength of the gravity system were not considered for the EBF models. This 

column was constrained laterally to have the same lateral displacements of the EBF columns. 

The full dead load plus 25% of the unreduced live load for one-quarter of the building was 

subtracted from the gravity load assigned to the EBF columns and then applied to this leaning 

column at each story. Additionally, for models with a flexible base, the gravity load needed to 
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equalize the design gravity load for the foundation was applied at the base of columns. This was 

done to ensure that the springs beneath the footing have the correct ratio between the ultimate 

bearing capacity (Vult) and the design gravity load (Vd) (i.e., vertical factor of safety, FSv). Figure 

32 shows the description of the two-dimensional models developed in OpenSees Navigator with 

the leaning column using the fixed and flexible base conditions. 

 
(a)                                                                   (b) 

          

 Note: Gravity loads on the EBF columns and the foundation are not shown for clarity 

Figure 32. Two-dimensional models for EBFs with a leaning column: (a) fixed base; and (b) 

flexible base 

 

 Three different models were evaluated using nonlinear analyses. Firstly, a preliminary 

fixed base model was designed (EBF1FB). Secondly, the same preliminary designed model 

(EBF1SSI) was analyzed using a flexible base. Finally, the EFB was re-designed and analyzed 

according to the guidelines for considering SSI (EBF2SSI) in ASCE/SEI 7-10. LE, EPP, and NL 

springs were used along with the Winkler’s approach to model the flexible base conditions, and 

the material models used for these springs are shown in Figure 32b. 
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G. Nonlinear Static Analyses 

 

 Nonlinear static analyses or pushover analyses were conducted to characterize the 

load-deformation capacity of the EBFs under static lateral loads. The gravity load was applied 

first to the models and then the EBFs were pushed using the lateral force distribution suggested 

by the equivalent lateral force (ELF) procedure in ASCE/SEI 7-10. Figure 33 shows a schematic 

illustration of a pushover analysis considering the flexibility of the soil. In addition to the 

pushover analyses, modal analyses (MA) were performed to determine the periods of vibration 

of the EBF models with the fixed and flexible base conditions and their other dynamic 

properties. 

 

Figure 33. Schematic illustration of a pushover analysis and the resulting pushover curve 

for a building with a flexible base (NIST, 2012) 

 

Figure 34. Determination of system overstrength factor ( and global ductility ( 

(adapted from Prinz, 2010) 

 



www.manaraa.com

  64  
 

H. Nonlinear Response History Analyses 

 

 Dynamic analyses were also conducted on the EBFs with the fixed and flexible base 

conditions. A set of ten ground motions was selected to perform the dynamic analyses. The 

strongest component of each ground motion pair was used because two-dimensional analyses 

were performed (ASCE, 2010). In order to choose these ten ground motions, the deaggregation 

of the seismic hazard corresponding to the peak acceleration and site class of the Gilroy 2 site 

was used for a return period of 2475 years (MCE). This deaggregation was obtained from the 

USGS Unified Hazard Tool, United States Geological Survey (2008), and it was implemented to 

gain some understanding of the combination of magnitudes (Mw) and rupture distances from the 

fault (Rrup) which contribute most to the seismic hazard at the Gilroy 2 site.  The deaggregation 

for a return period of 2475 years obtained using the USGS Hazard Tool is shown in Figure 35. 

As can be seen in Figure 35, the seismic hazard at the Gilroy 2 site is controlled by events 

located about 11 km from the site with an associated magnitude range between 6 and 7.  

 

Figure 35. USGS total component deaggregation (return period of 2475 years) for the 

Gilroy 2 site 
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 Before choosing the set of ten ground motions, the 5% damped design response 

spectrum according to ASCE/SEI 7-10 was constructed. This response spectrum was used as the 

target spectrum to perform the amplitude scaling process and match it with the average scaled 

response spectrum of the records over a period range from 0.2T to 1.5T (T=fundamental period 

of the structure). Finally, the results from the deaggregation (magnitude and distance), site class, 

target response spectrum shape, tectonic regime, and scale factors were considered to choose the 

ground motions. The ten records chosen are presented in Table 8 along with the scale factors 

used for each numerical model. The unscaled and scaled spectra along with the target spectrum 

for the EBF1FB, EBF1SSI, and EBF2SSI are shown in Figure 35, 36, and 37, respectively. 

Table 8. Selected ground motion records 

Event Station/Component 
Rrup 

(km) 

Site 

Class 
Mechanism 

Scale 

Factor-

Fixed Base 

(EBF1FB) 

Scale 

Factor-

Flexible 

Base 

(EBF1SSI) 

Scale 

Factor-

Flexible 

Base 

(EBF2SSI) 

Loma Prieta 
Gilroy Array 

No.2/000 
11.07 D Reverse/Oblique 1.59 1.82 2.33 

Loma Prieta 
Gilroy Array 

No.3/000 
12.82 D Reverse/Oblique 2.3 2.07 2.03 

Loma Prieta 
Hollister Differential 

Array/255 
24.82 D Reverse/Oblique 1.83 1.51 1.28 

Loma Prieta Capitola/000 15.23 D Reverse/Oblique 1.24 1.51 1.53 

Northridge 
Beverly Hills-14145 

Mulhol/279  
17.15 D Reverse 1.33 1.03 0.77 

Northridge 
Canyon Country-W 

Lost Cany/270 
12.44 D Reverse 0.94 1.36 1.47 

Northridge 
Pacoima Kagel 

Canyon/360 
7.26 C Reverse 1.16 1.25 1.22 

Coalinga 
Pleasant Valley P.P.-

yard/045 
16.05 D Reverse 1.06 1.02 1.15 

Kobe-Japan Amagasaki/090 11.34 D Reverse 1.05 0.85 0.79 

Christchurch

-New 

Zealand 

Papanui High School 

/33W 
9.06 D Reverse/Oblique 1.23 1.66 1.70 
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                       (a) 

 

                       (b) 

Figure 36. Design spectrum and spectra of selected ground motions for the EBF1FB model: 

(a) unscaled spectra; (b) scaled spectra 
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                       (a) 

 

                       (b) 

Figure 37. Design spectrum and spectra of selected ground motions for the EBF1SSI model: 

(a) unscaled spectra; (b) scaled spectra 
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                       (a) 

 

                       (b) 

Figure 38. Design spectrum and spectra of selected ground motions for the EBF2SSI model: 

(a) unscaled spectra; (b) scaled spectra 
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 The ground motions presented in Table 8 were selected from PEER Ground Motion 

Database considering the aforementioned procedure. A reduction on the design response 

spectrum was implemented for models considering SSI (see Figure 36 and 37). This reduction 

was due to the kinematic interaction effects; specifically, base-slab averaging effects. 

Embedment effects were not considered since the building prototype has no basement levels. 

Base-slab averaging was accounted for following FEMA P-1050. Kinematic effects in FEMA P-

1050 were considered by using the response spectra reduction factors RRSbsa and RRSe, for base-

slab averaging and embedment, respectively. These reduction factors multiply the spectral 

acceleration ordinates on the design response spectrum at each period. The product of RRSbsa and 

RRSe shall not be less than 0.60 (FEMA, 2015). The reduction due to base-slab averaging is 

allowed for structures located on site class C, D, or E soils, and for structures having structural 

mats or interconnected foundation elements. The reduction factor for base-slab averaging, 

RRSbsa, was determined in the form of a transfer function using the following equations for each 

period: 

𝑅𝑅𝑆𝑏𝑠𝑎 = 0.25 + 0.75 {
1

𝑏0
2
[1 − (exp(−2𝑏0

2))𝐵𝑏𝑠𝑎]}

1/2

                               (44) 

𝐵𝑏𝑠𝑎 = 

{
 
 

 
 1 + 𝑏0

2 + 𝑏0
4 +

𝑏0
6

2
+ 
𝑏0
8

4
+
𝑏0
10

12
    𝑓𝑜𝑟 𝑏0 ≤ 1

exp(2𝑏0
2) [

1

√𝜋𝑏0
(1 − 

1

16𝑏0
2)]    𝑓𝑜𝑟 𝑏0 > 1

                                   (45) 

𝑏0 = 0.00071 (
𝑏𝑒
𝑇
)                                                                  (46) 

𝑏𝑒 = √𝐴𝑏𝑎𝑠𝑒 ≤ 260 𝑓𝑡                                                                 (47) 
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The term Abase in Equation 47 refers to the area of the base of the building. All the above 

equations are very similar to Equation 28 to Equation 31, which were previously discussed in 

this document.  

 A 2% Rayleigh damping value was used in the dynamic analyses with consideration of 

its potential problems. Ricles and Popov (1994), Hall (2006), and Charney (2008) have 

demonstrated that Rayleigh damping may result in unrealisticly high damping forces in some 

structural elements during nonlinear response history analyses. The sensitivity of the Rayleigh 

damping was investigated by comparing it with the stiffness proportional damping. As a result of 

the sensitivity analysis, a mass-stiffness-proportional Rayleigh damping of 2% with stiffness at 

the last committed state was used over a period range between 0.2T and 1.5T, following the 

recommendations included in PEER/ATC 72-1, Modelling and Acceptance Criteria for Seismic 

Design and Analysis of Tall Buildings (PEER/ATC, 2010). As mentioned before, soil hysteretic 

and radiation damping was explicitly modeled using dashpots in models with a flexible base. 

IV. Results and Discussion 

 

A.  Modal and Nonlinear Static Analyses  

 

 The nonlinear static analyses indicate a similar capacity and overstrength factor, ,   for 

the EBFs designed with a fixed base (EBF1FB) and then analyzed with flexible base (EBF1SSI). 

Nevertheless, the global ductility, , is slightly greater for EBF1SSI with NL springs in 

comparison the other two EBF1SSI models and with EBF1FB, while the EBF1FB model and 

EBF1SSI models with EPP springs have similar . Figure 34 presents a description of how 

andaredeterminatedwhile Figure 38 shows the pushover curves (V/Ve vs roof drift) 

obtained for all models, where Ve is the design base shear. In fact, the overstrength factors for all 
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models are very close to 2, which is the value assumed in design (ASCE, 2010). For the case of 

global ductility, values of  in Table 8 are similar to the approximation of 4 (≈R/for this 

parameteraccording to FEMA P-1050. 

 

Figure 39. Pushover curves for the EBF models with the fixed and flexible base conditions 

 

Table 9. Results from pushover analyses 

Model Vmax (kips)   

EBF1FB 716.50 2.14 3.52 

EBF1SSI+LE springs 714.62 2.13 3.22 

EBF1SSI+EPP springs 714.06 2.13 3.35 

EBF1SSI+NL springs 700.60 2.09 3.77 

EBF2SSI+LE springs 604.04 2.13 2.86 

EBF2SSI+EPP springs 603.81 2.13 2.84 

EBF2SSI+NL springs 598.68 2.11 3.45 
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 For the case of the EBF model re-designed (EBF2SSI) considering SSI based on 

ASCE/SEI 7-10, the is also similar for all models and very close to 2. The  for the EBF2SSI 

with NL springs is approximately 1.20 times greater than those for EBF2SSI models with LE and 

EPP springs. Indeed, for the EBF2SSI models, is similar to the expected value only for the 

model using NL springs. In general, the EBF1 models have a greater capacity in comparison 

with EBF2, but their performance under lateral static monotonic load is similar. 

 As expected, the fundamental period of vibration for the model with a fixed base, T, is 

clearly stiffer than the fundamental periods of vibration for models with flexible base, 𝑇̃. This 

fact shows the effect of the inertial interaction on the dynamic properties of models with a 

flexible base. The periods of vibration for each frame are presented in Table 10. As can be seen 

in Table 10, there is period elongation due to the inertial interaction for the two EBFs designed 

(EBF1 and EBF2) with and without SSI, so SSI affected the dynamic properties of the flexible 

base frames, contrary to the prediction obtained using the empirical ratio h/(Vs.T) suggested by 

Stewart et al. (1999a, 1999b). The ratio 𝑇̃ 𝑇⁄  was also calculated using Equation 2 (Veletsos and 

Meek, 1974) and the results were very similar (less than 2% of difference) to those obtained with 

the modal analyses. 

Table 10. Fundamental periods of vibration for models with the fixed and flexible base  

Model T, 𝐓 ̃(seconds) 𝑻̃ 𝑻⁄  

EBF1FB 0.72 - 

EBF1SSI+LE springs 0.80 1.11 

EBF1SSI+EPP springs 0.80 1.11 

EBF1SSI+NL springs 0.81 1.125 

EBF2FB 0.78 - 

EBF2SSI+LE springs 0.86 1.10 

EBF2SSI+EPP springs 0.86 1.10 

EBF2SSI+NL springs 0.86 1.10 
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B.  Nonlinear Response History Analyses  

 

 After application of the gravity load, ten records were applied at the base of the EBF 

models as a uniform base excitation, and the average of the ten records was used to evaluate the 

performance of the frames according to ASCE/SEI 7-10. Results from the dynamic analyses of 

the EBFs with the fixed and flexible conditions base are presented in three parts: peak average 

inter-story drifts and residual drifts, peak average link rotation, and peak average column 

demands.  

Peak inter-story drifts were evaluated to estimate if the nonstructural elements of the 

building will suffer damage under the Design Basis Earthquake (DBE) and they were limited to 

1.25 times the limit for linear procedures (ASCE, 2010). For the case of residual drifts, they were 

evaluated to estimate the permanent drift after earthquake events, and they were limited to a 

value of 2/3 the limit (0.0067) suggested by PEER (2010) for the MCE hazard level. Residual 

drifts were computed by allowing 10 seconds of free vibration (i.e., analyses with zero 

acceleration) to the frames after the end of each record.  In order to evaluate the rotational 

capacity of the EBF links during the earthquakes, link rotations were calculated and compared 

with the limit of 0.08 radians suggested by ANSI/AISC 341-10. Finally, the column demands 

due to the combined effect of gravity and seismic loads (P) were assessed and compared with the 

design column demands (Pd) to validate the design conducted using the equivalent lateral load 

procedure. 

B1.  Peak Inter-Story and Residual Drifts 

 

  In general, EBFs with the fixed and flexible base conditions met the inter-story limit 

criterion required by ASCE/SEI 7-10 for nonlinear dynamic analysis. The maximum inter-story 
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drift demand occurs at the second level, but only a few individual records do not meet the drift 

limit at this level. There is a significant reduction at all levels in the inter-story drift for the 

EBF1SSI model with NL springs in comparison with the other cases. In addition, the unscaled 

Gilroy Array 2 record, which was the record measured at that site, meets the drift limit for all 

cases. Figures 39 to 42 show the individual and the average peak inter-story responses for the 

EBF1FB and for EBF1SSI with LE, EPP, and NL springs; respectively 

  For the frames re-designed considering SSI (EBF2SSI), similar trends to the EBF1s were 

obtained, but the Capitola ground motion showed a higher inter-story drift demand at the first 

floor. Only three individual records do not meet the drift limit at the first and second story; 

however, the peak average inter-story drift is below the limit for all cases. Figures 43 to 45 show 

the individual and the average peak inter-story responses for the EBF2SSI with elastic, EPP, and 

NL springs, respectively. Figure 46 shows a summary of all the drift responses for all EBFs.

 

Figure 40. Individual and average inter-story drifts for the EBF1FB 
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Figure 41. Individual and average inter-story drifts for the EBF1SSI with LE springs 

 

Figure 42. Individual and average inter-story drifts for the EBF1SSI with EPP springs 
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Figure 43. Individual and average inter-story drifts for the EBF1SSI with NL springs 

 

Figure 44. Individual and average inter-story drifts for the EBF2SSI with LE springs 

1

2

3

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050 0.055 0.060

S
to

ry

Maximum Inter-story Drift (rad)

Gilroy Array 2

Gilroy Array 3

Colinga Pleasant Valley

Hollister Differential Array

Capitola

Northridge Pacoima Kagel Canyon

Northridge Beverly Hills

Northridge Canyon County

Kobe Amagasabi

Christchurch Papanui High School

Mean

Gilroy Array 2-Unscaled

1

2

3

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050 0.055 0.060

S
to

ry

Maximum Inter-story Drift (rad)

Gilroy Array 2

Gilroy Array 3

Colinga Pleasant Valley

Hollister Differential Array

Capitola

Northridge Pacoima Kagel

Canyon
Northridge Beverly Hills

Northridge Canyon County

Kobe Amagasabi

Christchurch Papanui High School

Mean

Gilroy Array 2-Unscaled

L
im

it
 -

 A
S

C
E

7
-1

0
 S

ec
. 

1
6

.2
.4

.3
 

L
im

it
 -

 A
S

C
E

7
-1

0
 S

ec
. 

1
6

.2
.4

.3
 



www.manaraa.com

  77  
 

 

Figure 45. Individual and average inter-story drifts for the EBF2SSI with EPP springs 

 

Figure 46. Individual and average inter-story drifts for the EBF2SSI with NL springs 
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Figure 47. Average maximum inter-story drifts for all the EBF models 
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second floor, respectively) in the residual drifts at all levels. This can be an important fact for 

deciding whether this building behaves acceptably after earthquakes according to the residual 

drift limit suggested in FEMA 356. Using NL springs along with the Winkler’s approach can 

make a significant difference for meeting the residual drift limit not only for new buildings but 

also existing ones. 

 

Figure 48. Average maximum residual drifts for all the EBF models 

 

B2.  Link Rotation 

 

 Frames with the fixed and flexible base conditions showed link rotation demands below 

the limit (0.08 rad) suggested by ANSI/AISC 341-10 at all levels. Similar to the inter-story and 

residual drift responses, the maximum link rotation demand was at the second story. In addition, 

a significant reduction in the link rotation demand was also obtained for the EBF1SSI and 

EBF2SSI models with NL springs. For instance, the EBF1SSI and EBF2SSI models with NL 

1

2

3

0.000 0.003 0.006 0.009 0.012 0.015 0.018

S
to

ry

Average Maximum Inter-story Drift (rad)

Mean-Fixed Base(EBF1_FB)

Mean-Flexible Base1 (EBF1_SSI + Elastic

Springs)

Mean-Flexible Base1 (EBF1_SSI + Elastic-

Perfectly Plastic Springs)

Mean-Flexible Base1 (EBF1_SSI + Nonlinear

Springs-Boulanger, 2000)

Mean-Flexible Base2 (EBF2_SSI + Elastic

Spriings)

Mean-Flexible Base2 (EBF2_SSI + Elastic-

Perfectly Plastic Springs)

Mean-Flexible Base2 (EBF2_SSI + Nonlinear

Springs-Boulanger,2000)

L
im

it
 –

 P
E

E
R

 (
2

0
1
0
) 



www.manaraa.com

  80  
 

springs showed a reduction in the link rotations at the second story of approximately 2.3 and 1.58 

times in comparison with the other cases. These results suggest that the EBF links evaluated with 

column connections have an adequate performance. Reductions in the link rotations at all levels 

were obtained from models considering SSI with NL springs. The average maximum link 

rotations are presented in Figure 48. 

 

Figure 49. Average maximum link rotations for all the EBF models 
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Figure 50. Normalized (P/Pd) average maximum column demands (left column) for all the 

EBFs 

 

Figure 51. Normalized (P/Pd) average maximum column demands (right column) for all the 

EBFs 

1

2

3

0.0 0.5 1.0 1.5 2.0 2.5

S
to

ry

P/Pd

Mean-Fixed Base(EBF1_FB)

Mean-Flexible Base1 (EBF1_SSI + Elastic

Springs)

Mean-Flexible Base1 (EBF1_SSI + Elastic-

Perfectly Plastic Springs)

Mean-Flexible Base1 (EBF1_SSI +Nonlinear

Springs-Boulanger, 2000)

Mean-Flexible Base2 (EBF2_SSI + Elastic

Springs)

Mean-Flexible Base2 (EBF2_SSI + Elastic-

Perfectly Plastic Springs)

Mean-Flexible Base2 (EBF2_SSI + Nonlinear

Springs-Boulanger, 2000)

1

2

3

0.0 0.5 1.0 1.5 2.0 2.5

S
to

ry

P/Pd

Mean-Fixed Base(EBF1_FB)

Mean-Flexible Base1 (EBF1_SSI + Elastic Springs)

Mean-Flexible Base1 (EBF1_SSI + Elastic-

Perfectly Plastic Springs)

Mean-Flexible Base1 (EBF1_SSI + Nonlinear

Springs+Boulanger, 2000)

Mean-Flexible Base1 (EBF2_SSI + Elastic Springs)

Mean-Flexible Base1 (EBF2_SSI + Elastic-

Perfectly Plastic Springs)

Mean-Flexible Base2 (EBF2_SSI + Nonlinear-

Boulanger, 2000)



www.manaraa.com

  82  
 

 The normalized column demands, P/Pd, are shown in Figures 49 and 50 for the left and 

right column, respectively. In Figures 49 and 50, the dashed vertical line at P/Pd=1 shows that the 

peak average column demand is equal to the design load of the frame assuming simultaneous 

yielding of the EBF links. The left column has very similar P/Pd ratios throughout the entire 

frame height. Indeed, P/Pd ratios are close to unity at the first and second floor but approximately 

0.60 at the third floor for the EBFs with fixed and flexible bases. Results for the left column 

show that the link at the third floor does not yield simultaneously with the links at the first and 

second floor, and this indicates that the size of the column at the third floor can be reduced for 

the EBFs designed (EBF1 and EBF2). On the contrary, the right column showed a different load 

demand due to the yielding pattern of the EBF links. The right column at the third story reached 

its capacity while the right columns at the first and second level have a remaining capacity of 

approximately 20% on average. Unlike the inter-story drift, residual drift, and link rotation 

demands, the normalized column demands are slightly affected by the type of spring used for 

EBF models with a flexible base.  

B4.  EBF Weight Comparison 

 

 Two different EBFs were designed to validate the methodology suggested in 

ASCE/SEI 7-10 for considering SSI in the seismic analysis of building using the equivalent 

lateral force (ELF) procedure. One frame was designed using the ELF procedure ignoring SSI 

effects (EBF1) while the other EBF was designed using the ELF procedure considering SSI 

(EBF2). Based on the results shown in this section, the reduction in the size of some elements 

was justified trough the nonlinear static analyses (NSA) and nonlinear response history analysis 

(NRHA). As expected from the NSA, the lateral load capacity of the EBF2 models is greater 

than the capacity of the EBF1 models, but the performance of the EBF1 models is similar to the 
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EBF2 models. Average maximum inter-story and residual drifts, average peak link rotations, and 

average peak column demands met the criteria for the dynamic analyses conducted on EBFs 

designed considering SSI effects (EBF2). For the weight computations, a constant steel density 

of 490 lb/ft3 was assumed. As a result, EBF1 is 13.2% heavier than EBF2, thus considering SSI 

effects on the seismic analysis of the building used for this study reduced the weight of the EBF 

and therefore its cost. 

IV. Conclusions 

 

The ability to accommodate architectural features makes EBFs an attractive seismic 

lateral load-resisting system; however, the lack of studies about more efficient numerical 

analyses, such as those considering SSI effects, has hindered its broader used. In addition, the 

lower rotation capacity of EBF links with column connections in comparison with mid-span 

links have reduced The benefits in performance and cost-savings were shown by evaluating the 

seismic response of a prototype building having EBFs with and without the inclusion of SSI. 

Based on the results obtained from the MA, NSA, and NRHA, the conclusions for this study are: 

 EBFs with fixed and flexible base conditions showed similar lateral load capacities using 

the Winkler’s approach along with linear, EPP, and NL springs 

 EBFs modeled with a flexible base using NL springs showed similar  andgreater 

when compared to the model with a fixed base 

 EBFs modeled with a flexible base using LE and EPP springs showed similar and 

lower when compared to the model with a fixed base 
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 EBFs experienced period elongation ratios,𝑇̃ 𝑇,⁄  of 1.10 on average which was contrary 

to the insignificant effect of the inertial interaction predicted using the relationship 

suggested by Stewart et al. (1999a, 1999b)  

 NRHA showed that both the EBF designed ignoring SSI (EBF1) and the EBF designed 

considering SSI (EBF2) met the design criteria for inter-story drifts, residual drifts, link 

rotations, and columns demands 

 EBF1 and EBF2 modeled using a flexible base with NL springs showed significant 

reductions in inter-story drift, residual drift, and link rotation demands 

 Reductions in the link rotation demands obtained from models using NL springs suggest 

that the 3-story EBFs with link-to-column connections performed well under the seismic 

demand for the site studied, so connection testing or prequalified connections could be 

avoided  

 The reduction of the sizes of some structural elements obtained for the EBF2 using the 

methodology for considering SSI available in ASCE/SEI 7-10 was justified through the 

MA, NSA, and NRHA results 

 By considering SSI in the seismic analysis of the building analyzed, the weight of the 

EBF was reduce by 13.2% 

 Kinematic interaction effects were not significant for the building analyzed because there 

were no basement levels for consideration of embedment effects and soft soil conditions 

V. Recommendations for Future Work 

 

 The results obtained in this study suggest that using SSI for the seismic analysis of 

buildings could offer cost savings and a better understanding of their performance. However, 
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more research is needed in order to improve the application and understanding of SSI effects. It 

is suggested that future research efforts can focus on the following areas: 

 More experimental and numerical validation of the equations used for obtaining 

foundation impedances in non-homogenous soils 

 Revision of the effects of SSI on the R factors used for the seismic design of buildings to 

avoid over-conservatism  

 More validation of the existing equations for considering base-slab averaging and 

embedment effects using instrumented buildings 

 Development of additional nonlinear material models for non-uniform soil conditions to 

incorporate the energy dissipation capacity of shallow foundations 

 Evaluation of different lateral load-resisting systems considering SSI effects using the 

substructure as well as the direct approach, with and without basement levels 

 Perform SSI analyses on buildings with different lateral systems using soft soil 

conditions (soil types E and F) 

 Conduct experimental and analytical validations of the rotation capacity of EBF links 

considering SSI 
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